Fuzzy ROC google
The fuzzy ROC extends Receiver Operating Curve (ROC) visualization to the situation where some data points, falling in an indeterminacy region, are not classified. It addresses two challenges: definition of sensitivity and specificity bounds under indeterminacy; and visual summarization of the large number of possibilities arising from different choices of indeterminacy zones. …

Structured Stein Variational Inference for Continuous Graphical Models google
We propose a novel distributed inference algorithm for continuous graphical models by extending Stein variational gradient descent (SVGD) to leverage the Markov dependency structure of the distribution of interest. The idea is to use a set of local kernel functions over the Markov blanket of each node, which alleviates the problem of the curse of high dimensionality and simultaneously yields a distributed algorithm for decentralized inference tasks. We justify our method with theoretical analysis and show that the use of local kernels can be viewed as a new type of localized approximation that matches the target distribution on the conditional distributions of each node over its Markov blanket. Our empirical results demonstrate that our method outperforms a variety of baselines including standard MCMC and particle message passing methods. …

NLDpMRI google
Fast data acquisition in Magnetic Resonance Imaging (MRI) is vastly in demand and scan time directly depends on the number of acquired k-space samples. The most common issues in any deep learning-based MRI reconstruction approaches are generalizability and transferability. For different MRI scanner configurations using these approaches, the network must be trained from scratch every time with new training dataset, acquired under new configurations, to be able to provide good reconstruction performance. Here, we propose a new parallel imaging method based on deep neural networks called NLDpMRI to reduce any structured aliasing ambiguities related to the different k-space undersampling patterns for accelerated data acquisition. Two loss functions including non-regularized and regularized are proposed for parallel MRI reconstruction using deep network optimization and we reconstruct MR images by optimizing the proposed loss functions over the network parameters. Unlike any deep learning-based MRI reconstruction approaches, our method doesn’t include any training step that the network learns from a large number of training samples and it only needs the single undersampled multi-coil k-space data for reconstruction. Also, the proposed method can handle k-space data with different undersampling patterns, and different number of coils. Unlike most deep learning-based MRI reconstruction methods, our method operates on real-world acquisitions with the complex data format, not on simulated data, real-valued data, or data with added simulated-phase. Experimental results show that the proposed method outperforms the current state-of-the-art GRAPPA reconstruction method. …

ChannelNet google
Convolutional neural networks (CNNs) have shown great capability of solving various artificial intelligence tasks. However, the increasing model size has raised challenges in employing them in resource-limited applications. In this work, we propose to compress deep models by using channel-wise convolutions, which re- place dense connections among feature maps with sparse ones in CNNs. Based on this novel operation, we build light-weight CNNs known as ChannelNets. Channel- Nets use three instances of channel-wise convolutions; namely group channel-wise convolutions, depth-wise separable channel-wise convolutions, and the convolu- tional classification layer. Compared to prior CNNs designed for mobile devices, ChannelNets achieve a significant reduction in terms of the number of parameters and computational cost without loss in accuracy. Notably, our work represents the first attempt to compress the fully-connected classification layer, which usually accounts for about 25% of total parameters in compact CNNs. Experimental results on the ImageNet dataset demonstrate that ChannelNets achieve consistently better performance compared to prior methods. …