**SMTM**

Manually labeling documents is tedious and expensive, but it is essential for training a traditional text classifier. In recent years, a few dataless text classification techniques have been proposed to address this problem. However, existing works mainly center on single-label classification problems, that is, each document is restricted to belonging to a single category. In this paper, we propose a novel Seed-guided Multi-label Topic Model, named SMTM. With a few seed words relevant to each category, SMTM conducts multi-label classification for a collection of documents without any labeled document. In SMTM, each category is associated with a single category-topic which covers the meaning of the category. To accommodate with multi-labeled documents, we explicitly model the category sparsity in SMTM by using spike and slab prior and weak smoothing prior. That is, without using any threshold tuning, SMTM automatically selects the relevant categories for each document. To incorporate the supervision of the seed words, we propose a seed-guided biased GPU (i.e., generalized Polya urn) sampling procedure to guide the topic inference of SMTM. Experiments on two public datasets show that SMTM achieves better classification accuracy than state-of-the-art alternatives and even outperforms supervised solutions in some scenarios. … **ADA-Reverse Engineering (ADA-RE)**

This paper addresses detection of a reverse engineering (RE) attack targeting a deep neural network (DNN) image classifier; by querying, RE’s aim is to discover the classifier’s decision rule. RE can enable test-time evasion attacks, which require knowledge of the classifier. Recently, we proposed a quite effective approach (ADA) to detect test-time evasion attacks. In this paper, we extend ADA to detect RE attacks (ADA-RE). We demonstrate our method is successful in detecting ‘stealthy’ RE attacks before they learn enough to launch effective test-time evasion attacks. … **Thouless-Anderson-Palmer Gibbs Free Energy (TAP Gibbs Free Energy)**

The adaptive TAP Gibbs free energy for a general densely connected probabilistic model with quadratic interactions and arbritary single site constraints is derived. We show how a specific sequential minimization of the free energy leads to a generalization ofMinka’s expectation propagation. Lastly, we derive a sparse representation version of the sequential algorithm. The usefulness of the approach is demonstrated on classification and density estimation with Gaussian processes and on an independent component analysis problem. … **Expansivity**

An Automata Network is a map ${f:Q^n\rightarrow Q^n}$ where $Q$ is a finite alphabet. It can be viewed as a network of $n$ entities, each holding a state from $Q$, and evolving according to a deterministic synchronous update rule in such a way that each entity only depends on its neighbors in the network’s graph, called interaction graph. A major trend in automata network theory is to understand how the interaction graph affects dynamical properties of $f$. In this work we introduce the following property called expansivity: the observation of the sequence of states at any given node is sufficient to determine the initial configuration of the whole network. Our main result is a characterization of interaction graphs that allow expansivity. Moreover, we show that this property is generic among linear automata networks over such graphs with large enough alphabet. We show however that the situation is more complex when the alphabet is fixed independently of the size of the interaction graph: no alphabet is sufficient to obtain expansivity on all admissible graphs, and only non-linear solutions exist in some cases. Finally, among other results, we consider a stronger version of expansivity where we ask to determine the initial configuration from any large enough observation of the system. We show that it can be achieved for any number of nodes and naturally gives rise to maximum distance separable codes. …

# If you did not already know

**09**
*Wednesday*
Nov 2022

Posted What is ...

in