MAESTRO google
We present MAESTRO, a framework to describe and analyze CNN dataflows, and predict performance and energy-efficiency when running neural network layers across various hardware configurations. This includes two components: (i) a concise language to describe arbitrary dataflows and (ii) and analysis framework that accepts the dataflow description, hardware resource description, and DNN layer description as inputs and generates buffer requirements, buffer access counts, network-on-chip (NoC) bandwidth requirements, and roofline performance information. We demonstrate both components across several dataflows as case studies. …

RBFI Unit google
In adversarial attacks to machine-learning classifiers, small perturbations are added to input that is correctly classified. The perturbations yield adversarial examples, which are virtually indistinguishable from the unperturbed input, and yet are misclassified. In standard neural networks used for deep learning, attackers can craft adversarial examples from most input to cause a misclassification of their choice. We introduce a new type of network units, called RBFI units, whose non-linear structure makes them inherently resistant to adversarial attacks. On permutation-invariant MNIST, in absence of adversarial attacks, networks using RBFI units match the performance of networks using sigmoid units, and are slightly below the accuracy of networks with ReLU units. When subjected to adversarial attacks, networks with RBFI units retain accuracies above 90% for attacks that degrade the accuracy of networks with ReLU or sigmoid units to below 2%. RBFI networks trained with regular input are superior in their resistance to adversarial attacks even to ReLU and sigmoid networks trained with the help of adversarial examples. The non-linear structure of RBFI units makes them difficult to train using standard gradient descent. We show that networks of RBFI units can be efficiently trained to high accuracies using pseudogradients, computed using functions especially crafted to facilitate learning instead of their true derivatives. We show that the use of pseudogradients makes training deep RBFI networks practical, and we compare several structural alternatives of RBFI networks for their accuracy. …

Multimodal Deep Hashing Neural Decoder (MDHND) google
In this paper, we propose a novel three-stage multimodal deep hashing neural decoder (MDHND) architecture, which integrates a deep hashing framework with a neural network decoder (NND) to create an effective multibiometric authentication system. The MDHND consists of two separate modules: a multimodal deep hashing (MDH) module, which is used for feature-level fusion and binarization of multiple biometrics, and a neural network decoder (NND) module, which is used to refine the intermediate binary codes generated by the MDH and compensate for the difference between enrollment and probe biometrics (variations in pose, illumination, etc.). Use of NND helps to improve the performance of the overall multimodal authentication system. The MDHND framework is trained in 3 stages using joint optimization of the two modules. In Stage 1, the MDH parameters are trained and learned to generate a shared multimodal latent code; in Stage 2, the latent codes from Stage 1 are passed through a conventional error-correcting code (ECC) decoder to generate the ground truth to train a neural network decoder (NND); in Stage 3, the NND decoder is trained using the ground truth from Stage 2 and the MDH and NND are jointly optimized. Experimental results on a standard multimodal dataset demonstrate the superiority of our method relative to other current multimodal authentication systems. Furthermore, the proposed system can work in both identification and authentication modes. …

Feature2Mass google
This paper deals with a method for generating realistic labeled masses. Recently, there have been many attempts to apply deep learning to various bio-image computing fields including computer-aided detection and diagnosis. In order to learn deep network model to be well-behaved in bio-image computing fields, a lot of labeled data is required. However, in many bioimaging fields, the large-size of labeled dataset is scarcely available. Although a few researches have been dedicated to solving this problem through generative model, there are some problems as follows: 1) The generated bio-image does not seem realistic; 2) the variation of generated bio-image is limited; and 3) additional label annotation task is needed. In this study, we propose a realistic labeled bio-image generation method through visual feature processing in latent space. Experimental results have shown that mass images generated by the proposed method were realistic and had wide expression range of targeted mass characteristics. …