Graph Pattern Polynomial google
We study the time complexity of induced subgraph isomorphism problems where the pattern graph is fixed. The earliest known example of an improvement over trivial algorithms is by Itai and Rodeh (1978) who sped up triangle detection in graphs using fast matrix multiplication. This algorithm was generalized by Ne\v{s}et\v{r}il and Poljak (1985) to speed up detection of k-cliques. Improved algorithms are known for certain small-sized patterns. For example, a linear-time algorithm is known for detecting length-4 paths. In this paper, we give the first pattern detection algorithm that improves upon Ne\v{s}et\v{r}il and Poljak’s algorithm for arbitrarily large pattern graphs (not cliques). The algorithm is obtained by reducing the induced subgraph isomorphism problem to the problem of detecting multilinear terms in constant-degree polynomials. We show that the same technique can be used to reduce the induced subgraph isomorphism problem of many pattern graphs to constructing arithmetic circuits computing homomorphism polynomials of these pattern graphs. Using this, we obtain faster combinatorial algorithms (algorithms that do not use fast matrix multiplication) for k-paths and k-cycles. We also obtain faster algorithms for 5-paths and 5-cycles that match the runtime for triangle detection. We show that these algorithms are expressible using polynomial families that we call graph pattern polynomial families. We then define a notion of reduction among these polynomials that allows us to compare the complexity of various pattern detection problems within this framework. For example, we show that the induced subgraph isomorphism polynomial for any pattern that contains a k-clique is harder than the induced subgraph isomorphism polynomial for k-clique. An analogue of this theorem is not known with respect to general algorithmic hardness. …

FixyNN google
The computational demands of computer vision tasks based on state-of-the-art Convolutional Neural Network (CNN) image classification far exceed the energy budgets of mobile devices. This paper proposes FixyNN, which consists of a fixed-weight feature extractor that generates ubiquitous CNN features, and a conventional programmable CNN accelerator which processes a dataset-specific CNN. Image classification models for FixyNN are trained end-to-end via transfer learning, with the common feature extractor representing the transfered part, and the programmable part being learnt on the target dataset. Experimental results demonstrate FixyNN hardware can achieve very high energy efficiencies up to 26.6 TOPS/W ($4.81 \times$ better than iso-area programmable accelerator). Over a suite of six datasets we trained models via transfer learning with an accuracy loss of $<1\%$ resulting in up to 11.2 TOPS/W – nearly $2 \times$ more efficient than a conventional programmable CNN accelerator of the same area. …

Enhanced Concept Profiling Framework (ECPF) google
When concept drift is detected during classification in a data stream, a common remedy is to retrain a framework’s classifier. However, this loses useful information if the classifier has learnt the current concept well, and this concept will recur again in the future. Some frameworks retain and reuse classifiers, but it can be time-consuming to select an appropriate classifier to reuse. These frameworks rarely match the accuracy of state-of-the-art ensemble approaches. For many data stream tasks, speed is important: fast, accurate frameworks are needed for time-dependent applications. We propose the Enhanced Concept Profiling Framework (ECPF), which aims to recognise recurring concepts and reuse a classifier trained previously, enabling accurate classification immediately following a drift. The novelty of ECPF is in how it uses similarity of classifications on new data, between a new classifier and existing classifiers, to quickly identify the best classifier to reuse. It always trains both a new classifier and a reused classifier, and retains the more accurate classifier when concept drift occurs. Finally, it creates a copy of reused classifiers, so a classifier well-suited for a recurring concept will not be impacted by being trained on a different concept. In our experiments, ECPF classifies significantly more accurately than a state-of-the-art classifier reuse framework (Diversity Pool) and a state-of-the-art ensemble technique (Adaptive Random Forest) on synthetic datasets with recurring concepts. It classifies real-world datasets five times faster than Diversity Pool, and six times faster than Adaptive Random Forest and is not significantly less accurate than either. …

Monotone Data Augmentation (MDA) google
An efficient monotone data augmentation (MDA) algorithm is proposed for missing data imputation for incomplete multivariate nonnormal data that may contain variables of different types, and are modeled by a sequence of regression models including the linear, binary logistic, multinomial logistic, proportional odds, Poisson, negative binomial, skew-normal, skew-t regressions or a mixture of these models. The MDA algorithm is applied to the sensitivity analyses of longitudinal trials with nonignorable dropout using the controlled pattern imputations that assume the treatment effect reduces or disappears after subjects in the experimental arm discontinue the treatment. We also describe a heuristic approach to implement the controlled imputation, in which the fully conditional specification method is used to impute the intermediate missing data to create a monotone missing pattern, and the missing data after dropout are then imputed according to the assumed nonignorable mechanisms. The proposed methods are illustrated by simulation and real data analyses. …