Recurrently Controlled Recurrent Network (RCRN) google
Recurrent neural networks (RNNs) such as long short-term memory and gated recurrent units are pivotal building blocks across a broad spectrum of sequence modeling problems. This paper proposes a recurrently controlled recurrent network (RCRN) for expressive and powerful sequence encoding. More concretely, the key idea behind our approach is to learn the recurrent gating functions using recurrent networks. Our architecture is split into two components – a controller cell and a listener cell whereby the recurrent controller actively influences the compositionality of the listener cell. We conduct extensive experiments on a myriad of tasks in the NLP domain such as sentiment analysis (SST, IMDb, Amazon reviews, etc.), question classification (TREC), entailment classification (SNLI, SciTail), answer selection (WikiQA, TrecQA) and reading comprehension (NarrativeQA). Across all 26 datasets, our results demonstrate that RCRN not only consistently outperforms BiLSTMs but also stacked BiLSTMs, suggesting that our controller architecture might be a suitable replacement for the widely adopted stacked architecture. …

Noise Sensitivity Score (NSS) google
Deep Neural Networks (DNN) have excessively advanced the field of computer vision by achieving state of the art performance in various vision tasks. These results are not limited to the field of vision but can also be seen in speech recognition and machine translation tasks. Recently, DNNs are found to poorly fail when tested with samples that are crafted by making imperceptible changes to the original input images. This causes a gap between the validation and adversarial performance of a DNN. An effective and generalizable robustness metric for evaluating the performance of DNN on these adversarial inputs is still missing from the literature. In this paper, we propose Noise Sensitivity Score (NSS), a metric that quantifies the performance of a DNN on a specific input under different forms of fix-directional attacks. An insightful mathematical explanation is provided for deeply understanding the proposed metric. By leveraging the NSS, we also proposed a skewness based dataset robustness metric for evaluating a DNN’s adversarial performance on a given dataset. Extensive experiments using widely used state of the art architectures along with popular classification datasets, such as MNIST, CIFAR-10, CIFAR-100, and ImageNet, are used to validate the effectiveness and generalization of our proposed metrics. Instead of simply measuring a DNN’s adversarial robustness in the input domain, as previous works, the proposed NSS is built on top of insightful mathematical understanding of the adversarial attack and gives a more explicit explanation of the robustness. …

EnsembleDAgger google
While imitation learning is often used in robotics, this approach often suffers from data mismatch and compounding errors. DAgger is an iterative algorithm that addresses these issues by aggregating training data from both the expert and novice policies, but does not consider the impact of safety. We present a probabilistic extension to DAgger, which attempts to quantify the confidence of the novice policy as a proxy for safety. Our method, EnsembleDAgger, approximates a GP using an ensemble of neural networks. Using the variance as a measure of confidence, we compute a decision rule that captures how much we doubt the novice, thus determining when it is safe to allow the novice to act. With this approach, we aim to maximize the novice’s share of actions, while constraining the probability of failure. We demonstrate improved safety and learning performance compared to other DAgger variants and classic imitation learning on an inverted pendulum and in the MuJoCo HalfCheetah environment. …

VATEX google
We present a new large-scale multilingual video description dataset, VATEX, which contains over 41,250 videos and 825,000 captions in both English and Chinese. Among the captions, there are over 206,000 English-Chinese parallel translation pairs. Compared to the widely-used MSR-VTT dataset, VATEX is multilingual, larger, linguistically complex, and more diverse in terms of both video and natural language descriptions. We also introduce two tasks for video-and-language research based on VATEX: (1) Multilingual Video Captioning, aimed at describing a video in various languages with a compact unified captioning model, and (2) Video-guided Machine Translation, to translate a source language description into the target language using the video information as additional spatiotemporal context. Extensive experiments on the VATEX dataset show that, first, the unified multilingual model can not only produce both English and Chinese descriptions for a video more efficiently, but also offer improved performance over the monolingual models. Furthermore, we demonstrate that the spatiotemporal video context can be effectively utilized to align source and target languages and thus assist machine translation. In the end, we discuss the potentials of using VATEX for other video-and-language research. …