DiscoFuse
A problem of considerable importance within the field of uncertainty quantification (UQ) is the development of efficient methods for the construction of accurate surrogate models. Such efforts are particularly important to applications constrained by high-dimensional uncertain parameter spaces. The difficulty of accurate surrogate modeling in such systems, is further compounded by data scarcity brought about by the large cost of forward model evaluations. Traditional response surface techniques, such as Gaussian process regression (or Kriging) and polynomial chaos are difficult to scale to high dimensions. To make surrogate modeling tractable in expensive high-dimensional systems, one must resort to dimensionality reduction of the stochastic parameter space. A recent dimensionality reduction technique that has shown great promise is the method of `active subspaces’. The classical formulation of active subspaces, unfortunately, requires gradient information from the forward model – often impossible to obtain. In this work, we present a simple, scalable method for recovering active subspaces in high-dimensional stochastic systems, without gradient-information that relies on a reparameterization of the orthogonal active subspace projection matrix, and couple this formulation with deep neural networks. We demonstrate our approach on synthetic and real world datasets and show favorable predictive comparison to classical active subspaces. …
Label Embedded Dictionary Learning (LEDL)
Dictionary learning methods can be split into two categories: i) class specific dictionary learning ii) class shared dictionary learning. The difference between the two categories is how to use the discriminative information. With the first category, samples of different classes are mapped to different subspaces which leads to some redundancy in the base vectors. For the second category, the samples in each specific class can not be described well. Moreover, most class shared dictionary learning methods use the L0-norm regularization term as the sparse constraint. In this paper, we first propose a novel class shared dictionary learning method named label embedded dictionary learning (LEDL) by introducing the L1-norm sparse constraint to replace the conventional L0-norm regularization term in LC-KSVD method. Then we propose a novel network named hybrid dictionary learning network (HDLN) to combine the class specific dictionary learning with class shared dictionary learning together to fully describe the feature to boost the performance of classification. Extensive experimental results on six benchmark datasets illustrate that our methods are capable of achieving superior performance compared to several conventional classification algorithms. …
Generalization Tower Network (GTN)
Deep learning (DL) advances state-of-the-art reinforcement learning (RL), by incorporating deep neural networks in learning representations from the input to RL. However, the conventional deep neural network architecture is limited in learning representations for multi-task RL (MT-RL), as multiple tasks can refer to different kinds of representations. In this paper, we thus propose a novel deep neural network architecture, namely generalization tower network (GTN), which can achieve MT-RL within a single learned model. Specifically, the architecture of GTN is composed of both horizontal and vertical streams. In our GTN architecture, horizontal streams are used to learn representation shared in similar tasks. In contrast, the vertical streams are introduced to be more suitable for handling diverse tasks, which encodes hierarchical shared knowledge of these tasks. The effectiveness of the introduced vertical stream is validated by experimental results. Experimental results further verify that our GTN architecture is able to advance the state-of-the-art MT-RL, via being tested on 51 Atari games. …
Cluster Alignment with a Teacher (CAT)
Deep learning methods have shown promise in unsupervised domain adaptation, which aims to leverage a labeled source domain to learn a classifier for the unlabeled target domain with a different distribution. However, such methods typically learn a domain-invariant representation space to match the marginal distributions of the source and target domains, while ignoring their fine-level structures. In this paper, we propose Cluster Alignment with a Teacher (CAT) for unsupervised domain adaptation, which can effectively incorporate the discriminative clustering structures in both domains for better adaptation. Technically, CAT leverages an implicit ensembling teacher model to reliably discover the class-conditional structure in the feature space for the unlabeled target domain. Then CAT forces the features of both the source and the target domains to form discriminative class-conditional clusters and aligns the corresponding clusters across domains. Empirical results demonstrate that CAT achieves state-of-the-art results in several unsupervised domain adaptation scenarios. …
If you did not already know
08 Saturday Oct 2022
Posted What is ...
in