**Single Index Latent Variable Models (SILVar)**

A semi-parametric, non-linear regression model in the presence of latent variables is introduced. These latent variables can correspond to unmodeled phenomena or unmeasured agents in a complex networked system. This new formulation allows joint estimation of certain non-linearities in the system, the direct interactions between measured variables, and the effects of unmodeled elements on the observed system. The particular form of the model is justified, and learning is posed as a regularized maximum likelihood estimation. This leads to classes of structured convex optimization problems with a ‘sparse plus low-rank’ flavor. Relations between the proposed model and several common model paradigms, such as those of Robust Principal Component Analysis (PCA) and Vector Autoregression (VAR), are established. Particularly in the VAR setting, the low-rank contributions can come from broad trends exhibited in the time series. Details of the algorithm for learning the model are presented. Experiments demonstrate the performance of the model and the estimation algorithm on simulated and real data. … **Django**

Django is a high-level Python Web framework that encourages rapid development and clean, pragmatic design. Built by experienced developers, it takes care of much of the hassle of Web development, so you can focus on writing your app without needing to reinvent the wheel. It’s free and open source. … **Adaptive Massively Parallel Computation (AMPC)**

We introduce the Adaptive Massively Parallel Computation (AMPC) model, which is an extension of the Massively Parallel Computation (MPC) model. At a high level, the AMPC model strengthens the MPC model by storing all messages sent within a round in a distributed data store. In the following round, all machines are provided with random read access to the data store, subject to the same constraints on the total amount of communication as in the MPC model. Our model is inspired by the previous empirical studies of distributed graph algorithms using MapReduce and a distributed hash table service. This extension allows us to give new graph algorithms with much lower round complexities compared to the best known solutions in the MPC model. In particular, in the AMPC model we show how to solve maximal independent set in $O(1)$ rounds and connectivity/minimum spanning tree in $O(\log\log_{m/n} n)$ rounds both using $O(n^\delta)$ space per machine for constant $\delta < 1$. In the same memory regime for MPC, the best known algorithms for these problems require polylog $n$ rounds. Our results imply that the 2-Cycle conjecture, which is widely believed to hold in the MPC model, does not hold in the AMPC model. … **Ladder**

The organizer of a machine learning competition faces the problem of maintaining an accurate leaderboard that faithfully represents the quality of the best submission of each competing team. What makes this estimation problem particularly challenging is its sequential and adaptive nature. As participants are allowed to repeatedly evaluate their submissions on the leaderboard, they may begin to overfit to the holdout data that supports the leaderboard. Few theoretical results give actionable advice on how to design a reliable leaderboard. Existing approaches therefore often resort to poorly understood heuristics such as limiting the bit precision of answers and the rate of re-submission. In this work, we introduce a notion of leaderboard accuracy tailored to the format of a competition. We introduce a natural algorithm called the Ladder and demonstrate that it simultaneously supports strong theoretical guarantees in a fully adaptive model of estimation, withstands practical adversarial attacks, and achieves high utility on real submission files from an actual competition hosted by Kaggle. …

# If you did not already know

**06**
*Thursday*
Oct 2022

Posted What is ...

in