Scale Invariant Probabilistic Neural Network (SPNN) google
Proposed by Specht (1990) <doi:10.1016/0893-6080(90)90049-q>. …

ToyArchitecture google
Research in Artificial Intelligence (AI) has focused mostly on two extremes: either on small improvements in narrow AI domains, or on universal theoretical frameworks which are usually uncomputable, incompatible with theories of biological intelligence, or lack practical implementations. The goal of this work is to combine the main advantages of the two: to follow a big picture view, while providing a particular theory and its implementation. In contrast with purely theoretical approaches, the resulting architecture should be usable in realistic settings, but also form the core of a framework containing all the basic mechanisms, into which it should be easier to integrate additional required functionality. In this paper, we present a novel, purposely simple, and interpretable hierarchical architecture which combines multiple different mechanisms into one system: unsupervised learning of a model of the world, learning the influence of one’s own actions on the world, model-based reinforcement learning, hierarchical planning and plan execution, and symbolic/sub-symbolic integration in general. The learned model is stored in the form of hierarchical representations with the following properties: 1) they are increasingly more abstract, but can retain details when needed, and 2) they are easy to manipulate in their local and symbolic-like form, thus also allowing one to observe the learning process at each level of abstraction. On all levels of the system, the representation of the data can be interpreted in both a symbolic and a sub-symbolic manner. This enables the architecture to learn efficiently using sub-symbolic methods and to employ symbolic inference. …

Apache Druid google
Druid is primarily used to store, query, and analyze large event streams. Examples of event streams include user generated data such as clickstreams, application generated data such as performance metrics, and machine generated data such as network flows and server metrics. Druid is optimized for sub-second queries to slice-and-dice, drill down, search, filter, and aggregate this data. Druid is commonly used to power interactive applications where performance, concurrency, and uptime are important. …

Budget Aware Object Detection (BAOD) google
We study the problem of object detection from a novel perspective in which annotation budget constraints are taken into consideration, appropriately coined Budget Aware Object Detection (BAOD). When provided with a fixed budget, we propose a strategy for building a diverse and informative dataset that can be used to optimally train a robust detector. We investigate both optimization and learning-based methods to sample which images to annotate and what type of annotation (strongly or weakly supervised) to annotate them with. We adopt a hybrid supervised learning framework to train the object detector from both these types of annotation. We conduct a comprehensive empirical study showing that a handcrafted optimization method outperforms other selection techniques including random sampling, uncertainty sampling and active learning. By combining an optimal image/annotation selection scheme with hybrid supervised learning to solve the BAOD problem, we show that one can achieve the performance of a strongly supervised detector on PASCAL-VOC 2007 while saving 12.8% of its original annotation budget. Furthermore, when $100\%$ of the budget is used, it surpasses this performance by 2.0 mAP percentage points. …