Small Sample Learning (SSL) google
As a promising area in artificial intelligence, a new learning paradigm, called Small Sample Learning (SSL), has been attracting prominent research attention in the recent years. In this paper, we aim to present a survey to comprehensively introduce the current techniques proposed on this topic. Specifically, current SSL techniques can be mainly divided into two categories. The first category of SSL approaches can be called ‘concept learning’, which emphasizes learning new concepts from only few related observations. The purpose is mainly to simulate human learning behaviors like recognition, generation, imagination, synthesis and analysis. The second category is called ‘experience learning’, which usually co-exists with the large sample learning manner of conventional machine learning. This category mainly focuses on learning with insufficient samples, and can also be called small data learning in some literatures. More extensive surveys on both categories of SSL techniques are introduced and some neuroscience evidences are provided to clarify the rationality of the entire SSL regime, and the relationship with human learning process. Some discussions on the main challenges and possible future research directions along this line are also presented. …

AgileNet google
The success of deep learning models is heavily tied to the use of massive amount of labeled data and excessively long training time. With the emergence of intelligent edge applications that use these models, the critical challenge is to obtain the same inference capability on a resource-constrained device while providing adaptability to cope with the dynamic changes in the data. We propose AgileNet, a novel lightweight dictionary-based few-shot learning methodology which provides reduced complexity deep neural network for efficient execution at the edge while enabling low-cost updates to capture the dynamics of the new data. Evaluations of state-of-the-art few-shot learning benchmarks demonstrate the superior accuracy of AgileNet compared to prior arts. Additionally, AgileNet is the first few-shot learning approach that prevents model updates by eliminating the knowledge obtained from the primary training. This property is ensured through the dictionaries learned by our novel end-to-end structured decomposition, which also reduces the memory footprint and computation complexity to match the edge device constraints. …

Datasheets for Datasets google
Currently there is no standard way to identify how a dataset was created, and what characteristics, motivations, and potential skews it represents. To begin to address this issue, we propose the concept of a datasheet for datasets, a short document to accompany public datasets, commercial APIs, and pretrained models. The goal of this proposal is to enable better communication between dataset creators and users, and help the AI community move toward greater transparency and accountability. By analogy, in computer hardware, it has become industry standard to accompany everything from the simplest components (e.g., resistors), to the most complex microprocessor chips, with datasheets detailing standard operating characteristics, test results, recommended usage, and other information. We outline some of the questions a datasheet for datasets should answer. These questions focus on when, where, and how the training data was gathered, its recommended use cases, and, in the case of human-centric datasets, information regarding the subjects’ demographics and consent as applicable. We develop prototypes of datasheets for two well-known datasets: Labeled Faces in The Wild~\cite{lfw} and the Pang \& Lee Polarity Dataset~\cite{polarity}. …

Action-Attending Graphic Neural Network (A2GNN) google
The motion analysis of human skeletons is crucial for human action recognition, which is one of the most active topics in computer vision. In this paper, we propose a fully end-to-end action-attending graphic neural network (A$^2$GNN) for skeleton-based action recognition, in which each irregular skeleton is structured as an undirected attribute graph. To extract high-level semantic representation from skeletons, we perform the local spectral graph filtering on the constructed attribute graphs like the standard image convolution operation. Considering not all joints are informative for action analysis, we design an action-attending layer to detect those salient action units (AUs) by adaptively weighting skeletal joints. Herein the filtering responses are parameterized into a weighting function irrelevant to the order of input nodes. To further encode continuous motion variations, the deep features learnt from skeletal graphs are gathered along consecutive temporal slices and then fed into a recurrent gated network. Finally, the spectral graph filtering, action-attending and recurrent temporal encoding are integrated together to jointly train for the sake of robust action recognition as well as the intelligibility of human actions. To evaluate our A$^2$GNN, we conduct extensive experiments on four benchmark skeleton-based action datasets, including the large-scale challenging NTU RGB+D dataset. The experimental results demonstrate that our network achieves the state-of-the-art performances. …