Perfect Privacy The problem of private data disclosure is studied from an information theoretic perspective. Considering a pair of correlated random variables $(X,Y)$, where $Y$ denotes the observed data while $X$ denotes the private latent variables, the following problem is addressed: What is the maximum information that can be revealed about $Y$, while disclosing no information about $X$? Assuming that a Markov kernel maps $Y$ to the revealed information $U$, it is shown that the maximum mutual information between $Y$ and $U$, i.e., $I(Y;U)$, can be obtained as the solution of a standard linear program, when $X$ and $U$ are required to be independent, called \textit{perfect privacy}. This solution is shown to be greater than or equal to the \textit{non-private information about $X$ carried by $Y$.} Maximal information disclosure under perfect privacy is is shown to be the solution of a linear program also when the utility is measured by the reduction in the mean square error, $\mathbb{E}[(Y-U)^2]$, or the probability of error, $\mbox{Pr}$. For jointly Gaussian $(X,Y)$, it is shown that perfect privacy is not possible if the kernel is applied to only $Y$; whereas perfect privacy can be achieved if the mapping is from both $X$ and $Y$; that is, if the private latent variables can also be observed at the encoder. Next, measuring the utility and privacy by $I(Y;U)$ and $I(X;U)$, respectively, the slope of the optimal utility-privacy trade-off curve is studied when $I(X;U)=0$. Finally, through a similar but independent analysis, an alternative characterization of the maximal correlation between two random variables is provided. …

Event Extraction (EE) One common application of text mining is event extraction, which encompasses deducing specific knowledge concerning incidents referred to in texts. Event extraction can be applied to various types of written text, e.g., (online) news messages, blogs, and manuscripts. …

Deep Feature Aggregation Network (DFANet) This paper introduces an extremely efficient CNN architecture named DFANet for semantic segmentation under resource constraints. Our proposed network starts from a single lightweight backbone and aggregates discriminative features through sub-network and sub-stage cascade respectively. Based on the multi-scale feature propagation, DFANet substantially reduces the number of parameters, but still obtains sufficient receptive field and enhances the model learning ability, which strikes a balance between the speed and segmentation performance. Experiments on Cityscapes and CamVid datasets demonstrate the superior performance of DFANet with 8$\times$ less FLOPs and 2$\times$ faster than the existing state-of-the-art real-time semantic segmentation methods while providing comparable accuracy. Specifically, it achieves 70.3\% Mean IOU on the Cityscapes test dataset with only 1.7 GFLOPs and a speed of 160 FPS on one NVIDIA Titan X card, and 71.3\% Mean IOU with 3.4 GFLOPs while inferring on a higher resolution image. …

Discriminative Model Discriminative models, also called conditional models, are a class of models used in machine learning for modeling the dependence of an unobserved variable y on an observed variable x. Within a probabilistic framework, this is done by modeling the conditional probability distribution P(y|x), which can be used for predicting y from x. Discriminative models, as opposed to generative models, do not allow one to generate samples from the joint distribution of x and y. However, for tasks such as classification and regression that do not require the joint distribution, discriminative models can yield superior performance. On the other hand, generative models are typically more flexible than discriminative models in expressing dependencies in complex learning tasks. In addition, most discriminative models are inherently supervised and cannot easily be extended to unsupervised learning. Application specific details ultimately dictate the suitability of selecting a discriminative versus generative model. …