Curious Meta-Controller
Recent success in deep reinforcement learning for continuous control has been dominated by model-free approaches which, unlike model-based approaches, do not suffer from representational limitations in making assumptions about the world dynamics and model errors inevitable in complex domains. However, they require a lot of experiences compared to model-based approaches that are typically more sample-efficient. We propose to combine the benefits of the two approaches by presenting an integrated approach called Curious Meta-Controller. Our approach alternates adaptively between model-based and model-free control using a curiosity feedback based on the learning progress of a neural model of the dynamics in a learned latent space. We demonstrate that our approach can significantly improve the sample efficiency and achieve near-optimal performance on learning robotic reaching and grasping tasks from raw-pixel input in both dense and sparse reward settings. …
Adaptive Window-based Streaming Edge Partitioning (ADWISE)
In recent years, the graph partitioning problem gained importance as a mandatory preprocessing step for distributed graph processing on very large graphs. Existing graph partitioning algorithms minimize partitioning latency by assigning individual graph edges to partitions in a streaming manner — at the cost of reduced partitioning quality. However, we argue that the mere minimization of partitioning latency is not the optimal design choice in terms of minimizing total graph analysis latency, i.e., the sum of partitioning and processing latency. Instead, for complex and long-running graph processing algorithms that run on very large graphs, it is beneficial to invest more time into graph partitioning to reach a higher partitioning quality — which drastically reduces graph processing latency. In this paper, we propose ADWISE, a novel window-based streaming partitioning algorithm that increases the partitioning quality by always choosing the best edge from a set of edges for assignment to a partition. In doing so, ADWISE controls the partitioning latency by adapting the window size dynamically at run-time. Our evaluations show that ADWISE can reach the sweet spot between graph partitioning latency and graph processing latency, reducing the total latency of partitioning plus processing by up to 23-47 percent compared to the state-of-the-art. …
WikiRank
Keyphrase is an efficient representation of the main idea of documents. While background knowledge can provide valuable information about documents, they are rarely incorporated in keyphrase extraction methods. In this paper, we propose WikiRank, an unsupervised method for keyphrase extraction based on the background knowledge from Wikipedia. Firstly, we construct a semantic graph for the document. Then we transform the keyphrase extraction problem into an optimization problem on the graph. Finally, we get the optimal keyphrase set to be the output. Our method obtains improvements over other state-of-art models by more than 2% in F1-score. …
Dreaming Neural Network
Recently a daily routine for associative neural networks has been proposed: the network Hebbian-learns during the awake state (thus behaving as a standard Hopfield model), then, during its sleep state, optimizing information storage, it consolidates pure patterns and removes spurious ones: this forces the synaptic matrix to collapse to the projector one (ultimately approaching the Kanter-Sompolinksy model). This procedure keeps the learning Hebbian-based (a biological must) but, by taking advantage of a (properly stylized) sleep phase, still reaches the maximal critical capacity (for symmetric interactions). So far this emerging picture (as well as the bulk of papers on unlearning techniques) was supported solely by mathematically-challenging routes, e.g. mainly replica-trick analysis and numerical simulations: here we rely extensively on Guerra’s interpolation techniques developed for neural networks and, in particular, we extend the generalized stochastic stability approach to the case. Confining our description within the replica symmetric approximation (where the previous ones lie), the picture painted regarding this generalization (and the previously existing variations on theme) is here entirely confirmed. Further, still relying on Guerra’s schemes, we develop a systematic fluctuation analysis to check where ergodicity is broken (an analysis entirely absent in previous investigations). We find that, as long as the network is awake, ergodicity is bounded by the Amit-Gutfreund-Sompolinsky critical line (as it should), but, as the network sleeps, sleeping destroys spin glass states by extending both the retrieval as well as the ergodic region: after an entire sleeping session the solely surviving regions are retrieval and ergodic ones and this allows the network to achieve the perfect retrieval regime (the number of storable patterns equals the number of neurons in the network). …
If you did not already know
13 Tuesday Sep 2022
Posted What is ...
in