STAcked and Reconstructed Graph Convolutional Network (STAR-GCN)
We propose a new STAcked and Reconstructed Graph Convolutional Networks (STAR-GCN) architecture to learn node representations for boosting the performance in recommender systems, especially in the cold start scenario. STAR-GCN employs a stack of GCN encoder-decoders combined with intermediate supervision to improve the final prediction performance. Unlike the graph convolutional matrix completion model with one-hot encoding node inputs, our STAR-GCN learns low-dimensional user and item latent factors as the input to restrain the model space complexity. Moreover, our STAR-GCN can produce node embeddings for new nodes by reconstructing masked input node embeddings, which essentially tackles the cold start problem. Furthermore, we discover a label leakage issue when training GCN-based models for link prediction tasks and propose a training strategy to avoid the issue. Empirical results on multiple rating prediction benchmarks demonstrate our model achieves state-of-the-art performance in four out of five real-world datasets and significant improvements in predicting ratings in the cold start scenario. The code implementation is available in https://…/STAR-GCN. …
Entity-Duet Neural Ranking Model (EDRM)
This paper presents the Entity-Duet Neural Ranking Model (EDRM), which introduces knowledge graphs to neural search systems. EDRM represents queries and documents by their words and entity annotations. The semantics from knowledge graphs are integrated in the distributed representations of their entities, while the ranking is conducted by interaction-based neural ranking networks. The two components are learned end-to-end, making EDRM a natural combination of entity-oriented search and neural information retrieval. Our experiments on a commercial search log demonstrate the effectiveness of EDRM. Our analyses reveal that knowledge graph semantics significantly improve the generalization ability of neural ranking models. …
Inner Average Ensemble (IAE)
Ensemble learning is a method of combining multiple trained models to improve the model accuracy. We introduce the usage of such methods, specifically ensemble average inside Convolutional Neural Networks (CNNs) architectures. By Inner Average Ensemble (IEA) of multiple convolutional neural layers (CNLs) replacing the single CNLs inside the CNN architecture, the accuracy of the CNN increased. A visual and a similarity score analysis of the features generated from IEA explains why it boosts the model performance. Empirical results using different benchmarking datasets and well-known deep model architectures shows that IEA outperforms the ordinary CNL used in CNNs. …
Triple Trustworthiness Measurement Frame (TTMF)
The Knowledge graph (KG) uses the triples to describe the facts in the real world. It has been widely used in intelligent analysis and understanding of big data. In constructing a KG, especially in the process of automation building, some noises and errors are inevitably introduced or much knowledges is missed. However, learning tasks based on the KG and its underlying applications both assume that the knowledge in the KG is completely correct and inevitably bring about potential errors. Therefore, in this paper, we establish a unified knowledge graph triple trustworthiness measurement framework to calculate the confidence values for the triples that quantify its semantic correctness and the true degree of the facts expressed. It can be used not only to detect and eliminate errors in the KG but also to identify new triples to improve the KG. The framework is a crisscrossing neural network structure. It synthesizes the internal semantic information in the triples and the global inference information of the KG to achieve the trustworthiness measurement and fusion in the three levels of entity-level, relationship-level, and KG-global-level. We conducted experiments on the common dataset FB15K (from Freebase) and analyzed the validity of the model’s output confidence values. We also tested the framework in the knowledge graph error detection or completion tasks. The experimental results showed that compared with other models, our model achieved significant and consistent improvements on the above tasks, further confirming the capabilities of our model. …
If you did not already know
10 Saturday Sep 2022
Posted What is ...
in