Cramer-Wold ICA (CW-ICA) google
Non-linear source separation is a challenging open problem with many applications. We extend a recently proposed Adversarial Non-linear ICA (ANICA) model, and introduce Cramer-Wold ICA (CW-ICA). In contrast to ANICA we use a simple, closed–form optimization target instead of a discriminator–based independence measure. Our results show that CW-ICA achieves comparable results to ANICA, while foregoing the need for adversarial training. …

Deformable Convolutional Networks google
Convolutional neural networks (CNNs) are inherently limited to model geometric transformations due to the fixed geometric structures in its building modules. In this work, we introduce two new modules to enhance the transformation modeling capacity of CNNs, namely, deformable convolution and deformable RoI pooling. Both are based on the idea of augmenting the spatial sampling locations in the modules with additional offsets and learning the offsets from target tasks, without additional supervision. The new modules can readily replace their plain counterparts in existing CNNs and can be easily trained end-to-end by standard back-propagation, giving rise to deformable convolutional networks. Extensive experiments validate the effectiveness of our approach on sophisticated vision tasks of object detection and semantic segmentation. The code would be released. …

Anomaly Detection Based Power Saving (ADEPOS) google
In industry 4.0, predictive maintenance(PM) is one of the most important applications pertaining to the Internet of Things(IoT). Machine learning is used to predict the possible failure of a machine before the actual event occurs. However, the main challenges in PM are (a) lack of enough data from failing machines, and (b) paucity of power and bandwidth to transmit sensor data to cloud throughout the lifetime of the machine. Alternatively, edge computing approaches reduce data transmission and consume low energy. In this paper, we propose Anomaly Detection based Power Saving(ADEPOS) scheme using approximate computing through the lifetime of the machine. In the beginning of the machines life, low accuracy computations are used when the machine is healthy. However, on the detection of anomalies, as time progresses, the system is switched to higher accuracy modes. We show using the NASA bearing dataset that using ADEPOS, we need 8.8X less neurons on average and based on post-layout results, the resultant energy savings are 6.4 to 6.65X …

Adaptive Quantile Sparse Image (AQuaSI) google
Inverse problems play a central role for many classical computer vision and image processing tasks. A key challenge in solving an inverse problem is to find an appropriate prior to convert an ill-posed problem into a well-posed task. Many of the existing priors, like total variation, are based on ad-hoc assumptions that have difficulties to represent the actual distribution of natural images. In this work, we propose the Adaptive Quantile Sparse Image (AQuaSI) prior. It is based on a quantile filter, can be used as a joint filter on guidance data, and be readily plugged into a wide range of numerical optimization algorithms. We demonstrate the efficacy of the proposed prior in joint RGB/depth upsampling, on RGB/NIR image restoration, and in a comparison with related regularization by denoising approaches. …