Analytics
Analytics is the discovery and communication of meaningful patterns in data. Especially valuable in areas rich with recorded information, analytics relies on the simultaneous application of statistics, computer programming and operations research to quantify performance. Analytics often favors data visualization to communicate insight. …
Box-Level Tracking for Video Object Segmentation (BoLTVOS)
We approach video object segmentation (VOS) by splitting the task into two sub-tasks: bounding box level tracking, followed by bounding box segmentation. Following this paradigm, we present BoLTVOS (Box-Level Tracking for video object segmentation), which consists of an R-CNN detector conditioned on the first-frame bounding box to detect the object of interest, a temporal consistency rescoring algorithm, and a Box2Seg network that converts bounding boxes to segmentation masks. BoLTVOS performs VOS using only the firstframe bounding box without the mask. We evaluate our approach on DAVIS 2017 and YouTube-VOS, and show that it outperforms all methods that do not perform first-frame fine-tuning. We further present BoLTVOS-ft, which learns to segment the object in question using the first-frame mask while it is being tracked, without increasing the runtime. BoLTVOS-ft outperforms PReMVOS, the previously best performing VOS method on DAVIS 2016 and YouTube-VOS, while running up to 45 times faster. Our bounding box tracker also outperforms all previous short-term and longterm trackers on the bounding box level tracking datasets OTB 2015 and LTB35. …
Context Tree
There has been growing interests in recent years from both practical and research perspectives for session-based recommendation tasks as long-term user profiles do not often exist in many real-life recommendation applications. In this case, recommendations for user’s immediate next actions need to be generated based on patterns in anonymous short sessions. An often overlooked aspect is that new items with limited observations arrive continuously in many domains (e.g. news and discussion forums). Therefore, recommendations need to be adaptive to such frequent changes. In this paper, we benchmark a new nonparametric method called context tree (CT) against various state-of-the-art methods on extensive datasets for session-based recommendation task. Apart from the standard static evaluation protocol adopted by previous literatures, we include an adaptive configuration to mimic the situation when new items with limited observations arrives continuously. Our results show that CT outperforms two best-performing approaches (recurrent neural network; heuristic-based nearest neighbor) in majority of the tested configurations and datasets. We analyze reasons for this and demonstrate that it is because of the better adaptation to changes in the domain, as well as the remarkable capability to learn static sequential patterns. Moreover, our running time analysis illustrates the efficiency of using CT as other nonparametric methods. …
Active Learning with Partial Feedback
In the large-scale multiclass setting, assigning labels often consists of answering multiple questions to drill down through a hierarchy of classes. Here, the labor required per annotation scales with the number of questions asked. We propose active learning with partial feedback. In this setup, the learner asks the annotator if a chosen example belongs to a (possibly composite) chosen class. The answer eliminates some classes, leaving the agent with a partial label. Success requires (i) a sampling strategy to choose (example, class) pairs, and (ii) learning from partial labels. Experiments on the TinyImageNet dataset demonstrate that our most effective method achieves a 21% relative improvement in accuracy for a 200k binary question budget. Experiments on the TinyImageNet dataset demonstrate that our most effective method achieves a 26% relative improvement (8.1% absolute) in top1 classification accuracy for a 250k (or 30%) binary question budget, compared to a naive baseline. Our work may also impact traditional data annotation. For example, our best method fully annotates TinyImageNet with only 482k (with EDC though, ERC is 491) binary questions (vs 827k for naive method). …
If you did not already know
25 Thursday Aug 2022
Posted What is ...
in