**GP-MaL**

Exploratory data analysis is a fundamental aspect of knowledge discovery that aims to find the main characteristics of a dataset. Dimensionality reduction, such as manifold learning, is often used to reduce the number of features in a dataset to a manageable level for human interpretation. Despite this, most manifold learning techniques do not explain anything about the original features nor the true characteristics of a dataset. In this paper, we propose a genetic programming approach to manifold learning called GP-MaL which evolves functional mappings from a high-dimensional space to a lower dimensional space through the use of interpretable trees. We show that GP-MaL is competitive with existing manifold learning algorithms, while producing models that can be interpreted and re-used on unseen data. A number of promising future directions of research are found in the process. … **Dual Asymmetric Deep Hashing Learning**

Due to the impressive learning power, deep learning has achieved a remarkable performance in supervised hash function learning. In this paper, we propose a novel asymmetric supervised deep hashing method to preserve the semantic structure among different categories and generate the binary codes simultaneously. Specifically, two asymmetric deep networks are constructed to reveal the similarity between each pair of images according to their semantic labels. The deep hash functions are then learned through two networks by minimizing the gap between the learned features and discrete codes. Furthermore, since the binary codes in the Hamming space also should keep the semantic affinity existing in the original space, another asymmetric pairwise loss is introduced to capture the similarity between the binary codes and real-value features. This asymmetric loss not only improves the retrieval performance, but also contributes to a quick convergence at the training phase. By taking advantage of the two-stream deep structures and two types of asymmetric pairwise functions, an alternating algorithm is designed to optimize the deep features and high-quality binary codes efficiently. Experimental results on three real-world datasets substantiate the effectiveness and superiority of our approach as compared with state-of-the-art. … **Ludwig**

Ludwig is a toolbox that allows to train and test deep learning models without the need to write code. … **Sigma-Delta Networks**

Deep neural networks can be obscenely wasteful. When processing video, a convolutional network expends a fixed amount of computation for each frame with no regard to the similarity between neighbouring frames. As a result, it ends up repeatedly doing very similar computations. To put an end to such waste, we introduce Sigma-Delta networks. With each new input, each layer in this network sends a discretized form of its change in activation to the next layer. Thus the amount of computation that the network does scales with the amount of change in the input and layer activations, rather than the size of the network. We introduce an optimization method for converting any pre-trained deep network into an optimally efficient Sigma-Delta network, and show that our algorithm, if run on the appropriate hardware, could cut at least an order of magnitude from the computational cost of processing video data. …

# If you did not already know

**30**
*Saturday*
Jul 2022

Posted What is ...

in