Transfer Learning
Machine learning and data mining techniques have been used in numerous real-world applications. An assumption of traditional machine learning methodologies is the training data and testing data are taken from the same domain, such that the input feature space and data distribution characteristics are the same. However, in some real-world machine learning scenarios, this assumption does not hold. There are cases where training data is expensive or difficult to collect. Therefore, there is a need to create high-performance learners trained with more easily obtained data from different domains. This methodology is referred to as transfer learning. This survey paper formally defines transfer learning, presents information on current solutions, and reviews applications applied to transfer learning. Lastly, there is information listed on software downloads for various transfer learning solutions and a discussion of possible future research work. The transfer learning solutions surveyed are independent of data size and can be applied to big data environments.
Recycling Deep Learning Models with Transfer Learning …
Generalized Robust Risk Minimization (GRRM)
Different types of training data have led to numerous schemes for supervised classification. Current learning techniques are tailored to one specific scheme and cannot handle general ensembles of training data. This paper presents a unifying framework for supervised classification with general ensembles of training data, and proposes the learning methodology of generalized robust risk minimization (GRRM). The paper shows how current and novel supervision schemes can be addressed under the proposed framework by representing the relationship between examples at test and training via probabilistic transformations. The results show that GRRM can handle different types of training data in a unified manner, and enable new supervision schemes that aggregate general ensembles of training data. …
AutoML for Loss Function Search (AM-LFS)
Designing an effective loss function plays an important role in visual analysis. Most existing loss function designs rely on hand-crafted heuristics that require domain experts to explore the large design space, which is usually sub-optimal and time-consuming. In this paper, we propose AutoML for Loss Function Search (AM-LFS) which leverages REINFORCE to search loss functions during the training process. The key contribution of this work is the design of search space which can guarantee the generalization and transferability on different vision tasks by including a bunch of existing prevailing loss functions in a unified formulation. We also propose an efficient optimization framework which can dynamically optimize the parameters of loss function’s distribution during training. Extensive experimental results on four benchmark datasets show that, without any tricks, our method outperforms existing hand-crafted loss functions in various computer vision tasks. …
AI Planning
The planning problem in Artificial Intelligence is about the decision making performed by intelligent creatures like robots, humans, or computer programs when trying to achieve some goal. It involves choosing a sequence of actions that will (with a high likelihood) transform the state of the world, step by step, so that it will satisfy the goal. The world is typically viewed to consist of atomic facts (state variables), and actions make some facts true and some facts false. In the following we discuss a number of ways of formalizing planning, and show how the planning problem can be solved automatically.
➘ “Automated Planning and Scheduling” …
If you did not already know
29 Friday Jul 2022
Posted What is ...
in