Named Entity Sequence Classification (NESC)
Named Entity Recognition (NER) aims at locating and classifying named entities in text. In some use cases of NER, including cases where detected named entities are used in creating content recommendations, it is crucial to have a reliable confidence level for the detected named entities. In this work we study the problem of finding confidence levels for detected named entities. We refer to this problem as Named Entity Sequence Classification (NESC). We frame NESC as a binary classification problem and we use NER as well as recurrent neural networks to find the probability of candidate named entity is a real named entity. We apply this approach to Tweet texts and we show how we could find named entities with high confidence levels from Tweets. …
RNNSecureNet
Recurrent neural network (RNN) is an effective neural network in solving very complex supervised and unsupervised tasks. There has been a significant improvement in RNN field such as natural language processing, speech processing, computer vision and other multiple domains. This paper deals with RNN application on different use cases like Incident Detection, Fraud Detection, and Android Malware Classification. The best performing neural network architecture is chosen by conducting different chain of experiments for different network parameters and structures. The network is run up to 1000 epochs with learning rate set in the range of 0.01 to 0.5.Obviously, RNN performed very well when compared to classical machine learning algorithms. This is mainly possible because RNNs implicitly extracts the underlying features and also identifies the characteristics of the data. This helps to achieve better accuracy. …
MorphNet
We introduce MorphNet, a single model that combines morphological analysis and disambiguation. Traditionally, analysis of morphologically complex languages has been performed in two stages: (i) A morphological analyzer based on finite-state transducers produces all possible morphological analyses of a word, (ii) A statistical disambiguation model picks the correct analysis based on the context for each word. MorphNet uses a sequence-to-sequence recurrent neural network to combine analysis and disambiguation. We show that when trained with text labeled with correct morphological analyses, MorphNet obtains state-of-the art or comparable results for nine different datasets in seven different languages. …
Apache Druid
Druid is primarily used to store, query, and analyze large event streams. Examples of event streams include user generated data such as clickstreams, application generated data such as performance metrics, and machine generated data such as network flows and server metrics. Druid is optimized for sub-second queries to slice-and-dice, drill down, search, filter, and aggregate this data. Druid is commonly used to power interactive applications where performance, concurrency, and uptime are important. …
If you did not already know
29 Friday Jul 2022
Posted What is ...
in