ABtree google
An Algorithm for Subgroup-Based Treatment Assignment. Given two possible treatments, there may exist subgroups who benefit greater from one treatment than the other. This problem is relevant to the field of marketing, where treatments may correspond to different ways of selling a product. It is similarly relevant to the field of public policy, where treatments may correspond to specific government programs …

Selective Forgetting google
Few-shot learning is a challenging problem where the system is required to achieve generalization from only few examples. Meta-learning tackles the problem by learning prior knowledge shared across a distribution of tasks, which is then used to quickly adapt to unseen tasks. Model-agnostic meta-learning (MAML) algorithm formulates prior knowledge as a common initialization across tasks. However, forcibly sharing an initialization brings about conflicts between tasks and thus compromises the quality of the initialization. In this work, by observing that the extent of compromise differs among tasks and between layers of a neural network, we propose a new initialization idea that employs task-dependent layer-wise attenuation, which we call selective forgetting. The proposed attenuation scheme dynamically controls how much of prior knowledge each layer will exploit for a given task. The experimental results demonstrate that the proposed method mitigates the conflicts and provides outstanding performance as a result. We further show that the proposed method, named L2F, can be applied and improve other state-of-the-art MAML-based frameworks, illustrating its generalizability. …

sigma.js google
Sigma is a JavaScript library dedicated to graph drawing. It makes easy to publish networks on Web pages, and allows developers to integrate network exploration in rich Web applications. …

Atomistic Structure Learning Algorithm (ASLA) google
One endeavour of modern physical chemistry is to use bottom-up approaches to design materials and drugs with desired properties. Here we introduce an atomistic structure learning algorithm (ASLA) that utilizes a convolutional neural network to build 2D compounds and layered structures atom by atom. The algorithm takes no prior data or knowledge on atomic interactions but inquires a first-principles quantum mechanical program for physical properties. Using reinforcement learning, the algorithm accumulates knowledge of chemical compound space for a given number and type of atoms and stores this in the neural network, ultimately learning the blueprint for the optimal structural arrangement of the atoms for a given target property. ASLA is demonstrated to work on diverse problems, including grain boundaries in graphene sheets, organic compound formation and a surface oxide structure. This approach to structure prediction is a first step toward direct manipulation of atoms with artificially intelligent first principles computer codes. …