Learning Intelligent Distribution Agent (LIDA)
The LIDA (Learning Intelligent Distribution Agent) cognitive architecture is an integrated artificial cognitive system that attempts to model a broad spectrum of cognition in biological systems, from low-level perception/action to high-level reasoning. Developed primarily by Stan Franklin and colleagues at the University of Memphis, the LIDA architecture is empirically grounded in cognitive science and cognitive neuroscience. In addition to providing hypotheses to guide further research, the architecture can support control structures for software agents and robots. Providing plausible explanations for many cognitive processes, the LIDA conceptual model is also intended as a tool with which to think about how minds work. Two hypotheses underlie the LIDA architecture and its corresponding conceptual model: 1) Much of human cognition functions by means of frequently iterated (~10 Hz) interactions, called cognitive cycles, between conscious contents, the various memory systems and action selection. 2) These cognitive cycles, serve as the ‘atoms’ of cognition of which higher-level cognitive processes are composed. …
Dafny
Dafny is a programming language with a program verifier. As you type in your program, the verifier constantly looks over your shoulders and flags any errors. …
Deep Comparison Network (DCN)
Few-shot deep learning is a topical challenge area for scaling visual recognition to open-ended growth in the space of categories to recognise. A promising line work towards realising this vision is deep networks that learn to match queries with stored training images. However, methods in this paradigm usually train a deep embedding followed by a single linear classifier. Our insight is that effective general-purpose matching requires discrimination with regards to features at multiple abstraction levels. We therefore propose a new framework termed Deep Comparison Network (DCN) that decomposes embedding learning into a sequence of modules, and pairs each with a relation module. The relation modules compute a non-linear metric to score the match using the corresponding embedding module’s representation. To ensure that all embedding module’s features are used, the relation modules are deeply supervised. Finally generalisation is further improved by a learned noise regulariser. The resulting network achieves state of the art performance on both miniImageNet and tieredImageNet, while retaining the appealing simplicity and efficiency of deep metric learning approaches. …
Text-Adaptive Generative Adversarial Network (TAGAN)
This paper addresses the problem of manipulating images using natural language description. Our task aims to semantically modify visual attributes of an object in an image according to the text describing the new visual appearance. Although existing methods synthesize images having new attributes, they do not fully preserve text-irrelevant contents of the original image. In this paper, we propose the text-adaptive generative adversarial network (TAGAN) to generate semantically manipulated images while preserving text-irrelevant contents. The key to our method is the text-adaptive discriminator that creates word-level local discriminators according to input text to classify fine-grained attributes independently. With this discriminator, the generator learns to generate images where only regions that correspond to the given text are modified. Experimental results show that our method outperforms existing methods on CUB and Oxford-102 datasets, and our results were mostly preferred on a user study. Extensive analysis shows that our method is able to effectively disentangle visual attributes and produce pleasing outputs. …
If you did not already know
15 Friday Jul 2022
Posted What is ...
in