Sequential Multinomial Logit google
Motivated by the phenomenon that companies introduce new products to keep abreast with customers’ rapidly changing tastes, we consider a novel online learning setting where a profit-maximizing seller needs to learn customers’ preferences through offering recommendations, which may contain existing products and new products that are launched in the middle of a selling period. We propose a sequential multinomial logit (SMNL) model to characterize customers’ behavior when product recommendations are presented in tiers. For the offline version with known customers’ preferences, we propose a polynomial-time algorithm and characterize the properties of the optimal tiered product recommendation. For the online problem, we propose a learning algorithm and quantify its regret bound. Moreover, we extend the setting to incorporate a constraint which ensures every new product is learned to a given accuracy. Our results demonstrate the tier structure can be used to mitigate the risks associated with learning new products. …

Meta-Interpretive Learning (MIGO) google
World-class human players have been outperformed in a number of complex two person games (Go, Chess, Checkers) by Deep Reinforcement Learning systems. However, owing to tractability considerations minimax regret of a learning system cannot be evaluated in such games. In this paper we consider simple games (Noughts-and-Crosses and Hexapawn) in which minimax regret can be efficiently evaluated. We use these games to compare Cumulative Minimax Regret for variants of both standard and deep reinforcement learning against two variants of a new Meta-Interpretive Learning system called MIGO. In our experiments all tested variants of both normal and deep reinforcement learning have worse performance (higher cumulative minimax regret) than both variants of MIGO on Noughts-and-Crosses and Hexapawn. Additionally, MIGO’s learned rules are relatively easy to comprehend, and are demonstrated to achieve significant transfer learning in both directions between Noughts-and-Crosses and Hexapawn. …

km-means google
The $k$-means algorithm is the most popular nonparametric clustering method in use, but cannot generally be applied to data sets with missing observations. The usual practice with such data sets is to either impute the values under an assumption of a missing-at-random mechanism or to ignore the incomplete records, and then to use the desired clustering method. We develop an efficient version of the $k$-means algorithm that allows for clustering cases where not all the features have observations recorded. Our extension is called $k_m$-means and reduces to the $k$-means algorithm when all records are complete. We also provide strategies to initialize our algorithm and to estimate the number of groups in the data set. Illustrations and simulations demonstrate the efficacy of our approach in a variety of settings and patterns of missing data. Our methods are also applied to the clustering of gamma-ray bursts and to the analysis of activation images obtained from a functional Magnetic Resonance Imaging experiment. …

Principal Component Pursuit (PCP) google
see section 1.2
“Robust Principal Component Analysis”