Deep Semantic Multimodal Hashing Network (DSMHN)
Hashing has been widely applied to multimodal retrieval on large-scale multimedia data due to its efficiency in computation and storage. Particularly, deep hashing has received unprecedented research attention in recent years, owing to its perfect retrieval performance. However, most of existing deep hashing methods learn binary hash codes by preserving the similarity relationship while without exploiting the semantic labels, which result in suboptimal binary codes. In this work, we propose a novel Deep Semantic Multimodal Hashing Network (DSMHN) for scalable multimodal retrieval. In DSMHN, two sets of modality-specific hash functions are jointly learned by explicitly preserving both the inter-modality similarities and the intra-modality semantic labels. Specifically, with the assumption that the learned hash codes should be optimal for task-specific classification, two stream networks are jointly trained to learn the hash functions by embedding the semantic labels on the resultant hash codes. Different from previous deep hashing methods, which are tied to some particular forms of loss functions, our deep hashing framework can be flexibly integrated with different types of loss functions. In addition, the bit balance property is investigated to generate binary codes with each bit having $50\%$ probability to be $1$ or $-1$. Moreover, a unified deep multimodal hashing framework is proposed to learn compact and high-quality hash codes by exploiting the feature representation learning, inter-modality similarity preserving learning, semantic label preserving learning and hash functions learning with bit balanced constraint simultaneously. We conduct extensive experiments for both unimodal and cross-modal retrieval tasks on three widely-used multimodal retrieval datasets. The experimental result demonstrates that DSMHN significantly outperforms state-of-the-art methods. …
Cause-Emotion-Action Corpus
Many Natural Language Processing works on emotion analysis only focus on simple emotion classification without exploring the potentials of putting emotion into ‘event context’, and ignore the analysis of emotion-related events. One main reason is the lack of this kind of corpus. Here we present Cause-Emotion-Action Corpus, which manually annotates not only emotion, but also cause events and action events. We propose two new tasks based on the data-set: emotion causality and emotion inference. The first task is to extract a triple (cause, emotion, action). The second task is to infer the probable emotion. We are currently releasing the data-set with 10,603 samples and 15,892 events, basic statistic analysis and baseline on both emotion causality and emotion inference tasks. Baseline performance demonstrates that there is much room for both tasks to be improved. …
DT-LET
Previous transfer learning methods based on deep network assume the knowledge should be transferred between the same hidden layers of the source domain and the target domains. This assumption doesn’t always hold true, especially when the data from the two domains are heterogeneous with different resolutions. In such case, the most suitable numbers of layers for the source domain data and the target domain data would differ. As a result, the high level knowledge from the source domain would be transferred to the wrong layer of target domain. Based on this observation, ‘where to transfer’ proposed in this paper should be a novel research frontier. We propose a new mathematic model named DT-LET to solve this heterogeneous transfer learning problem. In order to select the best matching of layers to transfer knowledge, we define specific loss function to estimate the corresponding relationship between high-level features of data in the source domain and the target domain. To verify this proposed cross-layer model, experiments for two cross-domain recognition/classification tasks are conducted, and the achieved superior results demonstrate the necessity of layer correspondence searching. …
Modulated Policy Hierarchies (MPH)
Solving tasks with sparse rewards is a main challenge in reinforcement learning. While hierarchical controllers are an intuitive approach to this problem, current methods often require manual reward shaping, alternating training phases, or manually defined sub tasks. We introduce modulated policy hierarchies (MPH), that can learn end-to-end to solve tasks from sparse rewards. To achieve this, we study different modulation signals and exploration for hierarchical controllers. Specifically, we find that communicating via bit-vectors is more efficient than selecting one out of multiple skills, as it enables mixing between them. To facilitate exploration, MPH uses its different time scales for temporally extended intrinsic motivation at each level of the hierarchy. We evaluate MPH on the robotics tasks of pushing and sparse block stacking, where it outperforms recent baselines. …
If you did not already know
23 Thursday Jun 2022
Posted What is ...
in