End-Game-First Curriculum
Humans tend to learn complex abstract concepts faster if examples are presented in a structured manner. For instance, when learning how to play a board game, usually one of the first concepts learned is how the game ends, i.e. the actions that lead to a terminal state (win, lose or draw). The advantage of learning end-games first is that once the actions which lead to a terminal state are understood, it becomes possible to incrementally learn the consequences of actions that are further away from a terminal state – we call this an end-game-first curriculum. Currently the state-of-the-art machine learning player for general board games, AlphaZero by Google DeepMind, does not employ a structured training curriculum; instead learning from the entire game at all times. By employing an end-game-first training curriculum to train an AlphaZero inspired player, we empirically show that the rate of learning of an artificial player can be improved during the early stages of training when compared to a player not using a training curriculum. …
Defense-GAN
In recent years, deep neural network approaches have been widely adopted for machine learning tasks, including classification. However, they were shown to be vulnerable to adversarial perturbations: carefully crafted small perturbations can cause misclassification of legitimate images. We propose Defense-GAN, a new framework leveraging the expressive capability of generative models to defend deep neural networks against such attacks. Defense-GAN is trained to model the distribution of unperturbed images. At inference time, it finds a close output to a given image which does not contain the adversarial changes. This output is then fed to the classifier. Our proposed method can be used with any classification model and does not modify the classifier structure or training procedure. It can also be used as a defense against any attack as it does not assume knowledge of the process for generating the adversarial examples. We empirically show that Defense-GAN is consistently effective against different attack methods and improves on existing defense strategies. Our code has been made publicly available at https://…/defensegan. …
Latent State Tracking Network (LSTN)
Recently several deep learning based models have been proposed for end-to-end learning of dialogs. While these models can be trained from data without the need for any additional annotations, it is hard to interpret them. On the other hand, there exist traditional state based dialog systems, where the states of the dialog are discrete and hence easy to interpret. However these states need to be handcrafted and annotated in the data. To achieve the best of both worlds, we propose Latent State Tracking Network (LSTN) using which we learn an interpretable model in unsupervised manner. The model defines a discrete latent variable at each turn of the conversation which can take a finite set of values. Since these discrete variables are not present in the training data, we use EM algorithm to train our model in unsupervised manner. In the experiments, we show that LSTN can help achieve interpretability in dialog models without much decrease in performance compared to end-to-end approaches. …
Multi-State Model
Multi-state models are used to model a trajectory through multiple states. Survival models are a special case in which there are two states, alive and dead. Multi-state models are therefore useful in clinical settings because they can be used to predict or simulate disease progression in detail. Putter et al. provide a helpful tutorial. …
If you did not already know
15 Wednesday Jun 2022
Posted What is ...
in