Sequential Randomized Trial (SRT) google
Randomized experiments ensure robust causal inference that are critical to effective learning analytics research and practice. However, traditional randomized experiments, like A/B tests, are limiting in large scale digital learning environments. While traditional experiments can accurately compare two treatment options, they are less able to inform how to adapt interventions to continually meet learners’ diverse needs. In this work, we introduce a trial design for developing adaptive interventions in scaled digital learning environments — the sequential randomized trial (SRT). With the goal of improving learner experience and developing interventions that benefit all learners at all times, SRTs inform how to sequence, time, and personalize interventions. In this paper, we provide an overview of SRTs, and we illustrate the advantages they hold compared to traditional experiments. We describe a novel SRT run in a large scale data science MOOC. The trial results contextualize how learner engagement can be addressed through inclusive culturally targeted reminder emails. We also provide practical advice for researchers who aim to run their own SRTs to develop adaptive interventions in scaled digital learning environments. …

Similarity Distribution based Online Hashing (SDOH) google
Online hashing has attracted extensive research attention when facing streaming data. Most online hashing methods, learning binary codes based on pairwise similarities of training instances, fail to capture the semantic relationship, and suffer from a poor generalization in large-scale applications due to large variations. In this paper, we propose to model the similarity distributions between the input data and the hashing codes, upon which a novel supervised online hashing method, dubbed as Similarity Distribution based Online Hashing (SDOH), is proposed, to keep the intrinsic semantic relationship in the produced Hamming space. Specifically, we first transform the discrete similarity matrix into a probability matrix via a Gaussian-based normalization to address the extremely imbalanced distribution issue. And then, we introduce a scaling Student t-distribution to solve the challenging initialization problem, and efficiently bridge the gap between the known and unknown distributions. Lastly, we align the two distributions via minimizing the Kullback-Leibler divergence (KL-diverence) with stochastic gradient descent (SGD), by which an intuitive similarity constraint is imposed to update hashing model on the new streaming data with a powerful generalizing ability to the past data. Extensive experiments on three widely-used benchmarks validate the superiority of the proposed SDOH over the state-of-the-art methods in the online retrieval task. …

Fairness-Aware Re-Ranking Algorithm (FAR) google
Personalized recommendation brings about novel challenges in ensuring fairness, especially in scenarios in which users are not the only stakeholders involved in the recommender system. For example, the system may want to ensure that items from different providers have a fair chance of being recommended. To solve this problem, we propose a Fairness-Aware Re-ranking algorithm (FAR) to balance the ranking quality and provider-side fairness. We iteratively generate the ranking list by trading off between accuracy and the coverage of the providers. Although fair treatment of providers is desirable, users may differ in their receptivity to the addition of this type of diversity. Therefore, personalized user tolerance towards provider diversification is incorporated. Experiments are conducted on both synthetic and real-world data. The results show that our proposed re-ranking algorithm can significantly promote fairness with a slight sacrifice in accuracy and can do so while being attentive to individual user differences. …

Inter-Annotator Agreement Network google
This work develops a simple information theoretic framework that captures the dynamic of the inter-annotator agreement process and unifies a wide range of approaches in unsupervised learning. Our model consists of a pair of annotators whose goal is to maximize the mutual information between their annotations. Training the model with standard stochastic gradient descent is challenging, but we find an ablation of the model that admits variational approximation to be empirically effective. We illustrate the strength our framework by achieving new state-of-the-art accuracy on unsupervised part-of-speech tagging, in particular 78.7% on the 45-tag Penn WSJ dataset. We also show clear performance improvement in unsupervised entity typing. …