Tunnel Network google
Traditionally, deep learning algorithms update the network weights whereas the network architecture is chosen manually, using a process of trial and error. In this work, we propose two novel approaches that automatically update the network structure while also learning its weights. The novelty of our approach lies in our parameterization where the depth, or additional complexity, is encapsulated continuously in the parameter space through control parameters that add additional complexity. We propose two methods: In tunnel networks, this selection is done at the level of a hidden unit, and in budding perceptrons, this is done at the level of a network layer; updating this control parameter introduces either another hidden unit or another hidden layer. We show the effectiveness of our methods on the synthetic two-spirals data and on two real data sets of MNIST and MIRFLICKR, where we see that our proposed methods, with the same set of hyperparameters, can correctly adjust the network complexity to the task complexity. …

Compensated Coupling google
Motivated by the success of using black-box predictive algorithms as subroutines for online decision-making, we develop a new framework for designing online policies given access to an oracle providing statistical information about an offline benchmark. Having access to such prediction oracles enables simple and natural Bayesian selection policies, and raises the question as to how these policies perform in different settings. Our work makes two important contributions towards tackling this question: First, we develop a general technique we call *compensated coupling* which can be used to derive bounds on the expected regret (i.e., additive loss with respect to a benchmark) for any online policy and offline benchmark; Second, using this technique, we show that the Bayes Selector has constant expected regret (i.e., independent of the number of arrivals and resource levels) in any online packing and matching problem with a finite type-space. Our results generalize and simplify many existing results for online packing and matching problems, and suggest a promising pathway for obtaining oracle-driven policies for other online decision-making settings. …

Stacking-Based Deep Neural Network (S-DNN) google
Stacking-based deep neural network (S-DNN) is aggregated with pluralities of basic learning modules, one after another, to synthesize a deep neural network (DNN) alternative for pattern classification. Contrary to the DNNs trained end to end by backpropagation (BP), each S-DNN layer, i.e., a self-learnable module, is to be trained decisively and independently without BP intervention. In this paper, a ridge regression-based S-DNN, dubbed deep analytic network (DAN), along with its kernelization (K-DAN), are devised for multilayer feature re-learning from the pre-extracted baseline features and the structured features. Our theoretical formulation demonstrates that DAN/K-DAN re-learn by perturbing the intra/inter-class variations, apart from diminishing the prediction errors. We scrutinize the DAN/K-DAN performance for pattern classification on datasets of varying domains – faces, handwritten digits, generic objects, to name a few. Unlike the typical BP-optimized DNNs to be trained from gigantic datasets by GPU, we disclose that DAN/K-DAN are trainable using only CPU even for small-scale training sets. Our experimental results disclose that DAN/K-DAN outperform the present S-DNNs and also the BP-trained DNNs, including multiplayer perceptron, deep belief network, etc., without data augmentation applied. …

Multi-Object Tracking (MOT) google
In this paper, we propose a unified Multi-Object Tracking (MOT) framework learning to make full use of long term and short term cues for handling complex cases in MOT scenes. Besides, for better association, we propose switcher-aware classification (SAC), which takes the potential identity-switch causer (switcher) into consideration. Specifically, the proposed framework includes a Single Object Tracking (SOT) sub-net to capture short term cues, a re-identification (ReID) sub-net to extract long term cues and a switcher-aware classifier to make matching decisions using extracted features from the main target and the switcher. Short term cues help to find false negatives, while long term cues avoid critical mistakes when occlusion happens, and the SAC learns to combine multiple cues in an effective way and improves robustness. The method is evaluated on the challenging MOT benchmarks and achieves the state-of-the-art results. …