Multi-Output Learning
Multi-output learning aims to simultaneously predict multiple outputs given an input. It is an important learning problem due to the pressing need for sophisticated decision making in real-world applications. Inspired by big data, the 4Vs characteristics of multi-output imposes a set of challenges to multi-output learning, in terms of the volume, velocity, variety and veracity of the outputs. Increasing number of works in the literature have been devoted to the study of multi-output learning and the development of novel approaches for addressing the challenges encountered. However, it lacks a comprehensive overview on different types of challenges of multi-output learning brought by the characteristics of the multiple outputs and the techniques proposed to overcome the challenges. …
KSQL
KSQL is an open source, Apache 2.0 licensed streaming SQL engine that enables stream processing against Apache Kafka®. KSQL makes it easy to read, write, and process streaming data in real-time, at scale, using SQL-like semantics. It offers an easy way to express stream processing transformations as an alternative to writing an application in a programming language such as Java or Python. Currently available as a developer preview, KSQL provides powerful stream processing capabilities such as joins, aggregations, event-time windowing, and more! …
SecureBoost
The protection of user privacy is an important concern in machine learning, as evidenced by the rolling out of the General Data Protection Regulation (GDPR) in the European Union (EU) in May 2018. The GDPR is designed to give users more control over their personal data, which motivates us to explore machine learning frameworks with data sharing without violating user privacy. To meet this goal, in this paper, we propose a novel lossless privacy-preserving tree-boosting system known as SecureBoost in the setting of federated learning. This federated-learning system allows a learning process to be jointly conducted over multiple parties with partially common user samples but different feature sets, which corresponds to a vertically partitioned virtual data set. An advantage of SecureBoost is that it provides the same level of accuracy as the non-privacy-preserving approach while at the same time, reveal no information of each private data provider. We theoretically prove that the SecureBoost framework is as accurate as other non-federated gradient tree-boosting algorithms that bring the data into one place. In addition, along with a proof of security, we discuss what would be required to make the protocols completely secure. …
Metameric Sampling
Despite their impressive performance, deep neural networks exhibit striking failures on out-of-distribution inputs. One core idea of adversarial example research is to reveal neural network errors under such distribution shift. We decompose these errors into two complementary sources: sensitivity and invariance. We show deep networks are not only too sensitive to task-irrelevant changes of their input, as is well-known from epsilon-adversarial examples, but are also too invariant to a wide range of task-relevant changes, thus making vast regions in input space vulnerable to adversarial attacks. After identifying this excessive invariance, we propose the usage of bijective deep networks to enable access to all variations. We introduce metameric sampling as an analytic attack for these networks, requiring no optimization, and show that it uncovers large subspaces of misclassified inputs. Then we apply these networks to MNIST and ImageNet and show that one can manipulate the class-specific content of almost any image without changing the hidden activations. Further, we extend the standard cross-entropy loss to strengthen the model against such manipulations via an information-theoretic analysis, providing the first approach tailored explicitly to overcome invariance-based vulnerability. We conclude by empirically illustrating its ability to control undesirable class-specific invariance, showing promise to overcome one major cause for adversarial examples. …
If you did not already know
10 Friday Jun 2022
Posted What is ...
in