Adversarial-Neural Topic Model (ATM) google
Topic models are widely used for thematic structure discovery in text. But traditional topic models often require dedicated inference procedures for specific tasks at hand. Also, they are not designed to generate word-level semantic representations. To address these limitations, we propose a topic modeling approach based on Generative Adversarial Nets (GANs), called Adversarial-neural Topic Model (ATM). The proposed ATM models topics with Dirichlet prior and employs a generator network to capture the semantic patterns among latent topics. Meanwhile, the generator could also produce word-level semantic representations. To illustrate the feasibility of porting ATM to tasks other than topic modeling, we apply ATM for open domain event extraction. Our experimental results on the two public corpora show that ATM generates more coherence topics, outperforming a number of competitive baselines. Moreover, ATM is able to extract meaningful events from news articles. …

Nested Sampling Algorithm google
The nested sampling algorithm is a computational approach to the problem of comparing models in Bayesian statistics, developed in 2004 by physicist John Skilling. …

Data Reuse Efficiency google
Recurrent neural networks (RNNs) have shown state of the art results for speech recognition, natural language processing, image captioning and video summarizing applications. Many of these applications run on low-power platforms, so their energy efficiency is extremely important. We observed that cache-oblivious RNN scheduling during inference typically results in 30-50x more data transferred on and off the CPU than the application’s working set size. This can potentially impact its energy efficiency. This paper presents a new metric called Data Reuse Efficiency to gauge the RNN scheduling efficiency of a platform and shows the factors that influence the DRE value. Additionally, this paper discusses an optimization to improve reuse in RNNs and highlights the positive impact of this optimization on the total amount of memory read from or written to the memory controller (and, hence, the DRE value) during the execution of an RNN application for a mobile SoC. …

Content-Aware ReAssembly of FEatures (CARAFE) google
Feature upsampling is a key operation in a number of modern convolutional network architectures, e.g. feature pyramids. Its design is critical for dense prediction tasks such as object detection and semantic/instance segmentation. In this work, we propose Content-Aware ReAssembly of FEatures (CARAFE), a universal, lightweight and highly effective operator to fulfill this goal. CARAFE has several appealing properties: (1) Large field of view. Unlike previous works (e.g. bilinear interpolation) that only exploit sub-pixel neighborhood, CARAFE can aggregate contextual information within a large receptive field. (2) Content-aware handling. Instead of using a fixed kernel for all samples (e.g. deconvolution), CARAFE enables instance specific content-aware handling, which generates adaptive kernels on-the-fly. (3) Lightweight and fast to compute. CARAFE introduces little computational overhead and can be readily integrated into modern network architectures. We conduct comprehensive evaluations on standard benchmarks in object detection, instance/semantic segmentation and inpainting. CARAFE shows consistent and substantial gains across all the tasks (1.2%, 1.3%, 1.8%, 1.1db respectively) with negligible computational overhead. It has great potential to serve as a strong building block for future research. …