Convolutional Universal Text Information Extractor (CUTIE) google
Extracting key information from documents, such as receipts or invoices, and preserving the interested texts to structured data is crucial in the document-intensive streamline processes of office automation in areas that includes but not limited to accounting, financial, and taxation areas. To avoid designing expert rules for each specific type of document, some published works attempt to tackle the problem by learning a model to explore the semantic context in text sequences based on the Named Entity Recognition (NER) method in the NLP field. In this paper, we propose to harness the effective information from both semantic meaning and spatial distribution of texts in documents. Specifically, our proposed model, Convolutional Universal Text Information Extractor (CUTIE), applies convolutional neural networks on gridded texts where texts are embedded as features with semantical connotations. We further explore the effect of employing different structures of convolutional neural network and propose a fast and portable structure. We demonstrate the effectiveness of the proposed method on a dataset with up to 6,980 labelled receipts, without any pre-training or post-processing, achieving state of the art performance that is much higher than BERT but with only 1/10 parameters and without requiring the 3,300M word dataset for pre-training. Experimental results also demonstrate that the CUTIE being able to achieve state of the art performance with much smaller amount of training data. …

Multilevel Networks Analysis google
Described in Lazega et al (2008) <doi:10.1016/j.socnet.2008.02.001> and in Lazega and Snijders (2016, ISBN:978-3-319-24520-1). …

Semantic Analysis Approach for Recommendation (SAR) google
Recommendation system is a common demand in daily life and matrix completion is a widely adopted technique for this task. However, most matrix completion methods lack semantic interpretation and usually result in weak-semantic recommendations. To this end, this paper proposes a {\bf S}emantic {\bf A}nalysis approach for {\bf R}ecommendation systems \textbf{(SAR)}, which applies a two-level hierarchical generative process that assigns semantic properties and categories for user and item. SAR learns semantic representations of users/items merely from user ratings on items, which offers a new path to recommendation by semantic matching with the learned representations. Extensive experiments demonstrate SAR outperforms other state-of-the-art baselines substantially. …

Primal-Dual Group Convolutional Neural Networks (PDGCNets) google
In this paper, we present a simple and modularized neural network architecture, named primal-dual group convolutional neural networks (PDGCNets). The main point lies in a novel building block, a pair of two successive group convolutions: primal group convolution and dual group convolution. The two group convolutions are complementary: (i) the convolution on each primal partition in primal group convolution is a spatial convolution, while on each dual partition in dual group convolution, the convolution is a point-wise convolution; (ii) the channels in the same dual partition come from different primal partitions. We discuss one representative advantage: Wider than a regular convolution with the number of parameters and the computation complexity preserved. We also show that regular convolutions, group convolution with summation fusion (as used in ResNeXt), and the Xception block are special cases of primal-dual group convolutions. Empirical results over standard benchmarks, CIFAR-$10$, CIFAR-$100$, SVHN and ImageNet demonstrate that our networks are more efficient in using parameters and computation complexity with similar or higher accuracy. …