Data Driven Business Model (DDBM) google
This paper contributes by providing a definition of a data-driven business model as a business model that relies on data as a key resource. …

Surrogate Assisted Feature Extraction for Model Learning (SAFE ML) google
Complex black-box predictive models may have high accuracy, but opacity causes problems like lack of trust, lack of stability, sensitivity to concept drift. On the other hand, interpretable models require more work related to feature engineering, which is very time consuming. Can we train interpretable and accurate models, without timeless feature engineering? In this article, we show a method that uses elastic black-boxes as surrogate models to create a simpler, less opaque, yet still accurate and interpretable glass-box models. New models are created on newly engineered features extracted/learned with the help of a surrogate model. We show applications of this method for model level explanations and possible extensions for instance level explanations. We also present an example implementation in Python and benchmark this method on a number of tabular data sets. …

Bayes-Adaptive Markov Decision Process (BAMDP) google
Addressing uncertainty is critical for autonomous systems to robustly adapt to the real world. We formulate the problem of model uncertainty as a continuous Bayes-Adaptive Markov Decision Process (BAMDP), where an agent maintains a posterior distribution over the latent model parameters given a history of observations and maximizes its expected long-term reward with respect to this belief distribution. Our algorithm, Bayesian Policy Optimization, builds on recent policy optimization algorithms to learn a universal policy that navigates the exploration-exploitation trade-off to maximize the Bayesian value function. To address challenges from discretizing the continuous latent parameter space, we propose a policy network architecture that independently encodes the belief distribution from the observable state. Our method significantly outperforms algorithms that address model uncertainty without explicitly reasoning about belief distributions, and is competitive with state-of-the-art Partially Observable Markov Decision Process solvers. …

code2seq google
The ability to generate natural language sequences from source code snippets can be used for code summarization, documentation, and retrieval. Sequence-to-sequence (seq2seq) models, adopted from neural machine translation (NMT), have achieved state-of-the-art performance on these tasks by treating source code as a sequence of tokens. We present ${\rm {\scriptsize CODE2SEQ}}$: an alternative approach that leverages the syntactic structure of programming languages to better encode source code. Our model represents a code snippet as the set of paths in its abstract syntax tree (AST) and uses attention to select the relevant paths during decoding, much like contemporary NMT models. We demonstrate the effectiveness of our approach for two tasks, two programming languages, and four datasets of up to 16M examples. Our model significantly outperforms previous models that were specifically designed for programming languages, as well as general state-of-the-art NMT models. …