Shallow Triple Stream Three-Dimensional CNN (STSTNet) google
In the recent year, the state-of-the-arts of facial micro-expression recognition task have been significantly advanced by the emergence of data-driven approaches based on deep learning. Due to the superb learning capacity of deep learning, it generates promising performance beyond the traditional handcrafted approaches. Recently, many researchers have focused on developing better networks by increasing its depth, as deep networks can effectively approximate certain function classes more efficiently than shallow ones. In this paper, we aim to design a shallow network to extract the high level features of the micro-expression details. Specifically, a two-layer neural network, namely Shallow Triple Stream Three-dimensional CNN (STSTNet) is proposed. The network is capable to learn the features from three optical flow features (i.e., optical strain, horizontal and vertical optical flow images) computed from the onset and apex frames from each video. Our experimental results demonstrate the viability of the proposed STSTNet, which exhibits the UAR recognition results of 76.05%, 70.13%, 86.86% and 68.10% in composite, SMIC, CASME II and SAMM databases, respectively. …

Hubness google
The tendency of high-dimensional data to contain points (hubs) that frequently occur in k-nearest-neighbor lists of other points. Semantically Aligned Bias Reducing Zero Shot Learning
Semantically Aligned Bias Reducing Zero Shot Learning

Sparse Projected Gradient Descent (SPGD) google
Generating high-quality and interpretable adversarial examples in the text domain is a much more daunting task than it is in the image domain. This is due partly to the discrete nature of text, partly to the problem of ensuring that the adversarial examples are still probable and interpretable, and partly to the problem of maintaining label invariance under input perturbations. In order to address some of these challenges, we introduce sparse projected gradient descent (SPGD), a new approach to crafting interpretable adversarial examples for text. SPGD imposes a directional regularization constraint on input perturbations by projecting them onto the directions to nearby word embeddings with highest cosine similarities. This constraint ensures that perturbations move each word embedding in an interpretable direction (i.e., towards another nearby word embedding). Moreover, SPGD imposes a sparsity constraint on perturbations at the sentence level by ignoring word-embedding perturbations whose norms are below a certain threshold. This constraint ensures that our method changes only a few words per sequence, leading to higher quality adversarial examples. Our experiments with the IMDB movie review dataset show that the proposed SPGD method improves adversarial example interpretability and likelihood (evaluated by average per-word perplexity) compared to state-of-the-art methods, while suffering little to no loss in training performance. …

NeuronBlocks google
NeuronBlocks is a NLP deep learning modeling toolkit that helps engineers/researchers to build end-to-end pipelines for neural network model training for NLP tasks. The main goal of this toolkit is to minimize developing cost for NLP deep neural network model building, including both training and inference stages. For more details, please check our paper: NeuronBlocks — Building Your NLP DNN Models Like Playing Lego at https://…/1904.09535. NeuronBlocks consists of two major components: Block Zoo and Model Zoo.
• In Block Zoo, we provide commonly used neural network components as building blocks for model architecture design.
• In Model Zoo, we provide a suite of NLP models for common NLP tasks, in the form of JSON configuration files. …