Lifelong Federated Reinforcement Learning (LFRLA) google
This paper was motivated by the problem of how to make robots fuse and transfer their experience so that they can effectively use prior knowledge and quickly adapt to new environments. To address the problem, we present a learning architecture for navigation in cloud robotic systems: Lifelong Federated Reinforcement Learning (LFRLA). In the work, We propose a knowledge fusion algorithm for upgrading a shared model deployed on the cloud. Then, effective transfer learning methods in LFRLA are introduced. LFRLA is consistent with human cognitive science and fits well in cloud robotic systems. Experiments show that LFRLA greatly improves the efficiency of reinforcement learning for robot navigation. The cloud robotic system deployment also shows that LFRLA is capable of fusing prior knowledge. In addition, we release a cloud robotic navigation-learning website based on LFRLA. …

GraphRec google
In recent years, Graph Neural Networks (GNNs), which can naturally integrate node information and topological structure, have been demonstrated to be powerful in learning on graph data. These advantages of GNNs provide great potential to advance social recommendation since data in social recommender systems can be represented as user-user social graph and user-item graph; and learning latent factors of users and items is the key. However, building social recommender systems based on GNNs faces challenges. For example, the user-item graph encodes both interactions and their associated opinions; social relations have heterogeneous strengths; users involve in two graphs (e.g., the user-user social graph and the user-item graph). To address the three aforementioned challenges simultaneously, in this paper, we present a novel graph neural network framework (GraphRec) for social recommendations. In particular, we provide a principled approach to jointly capture interactions and opinions in the user-item graph and propose the framework GraphRec, which coherently models two graphs and heterogeneous strengths. Extensive experiments on two real-world datasets demonstrate the effectiveness of the proposed framework GraphRec. …

Hybrid Cosine Based Convolution google
Convolutional neural networks (CNNs) have demonstrated their capability to solve different kind of problems in a very huge number of applications. However, CNNs are limited for their computational and storage requirements. These limitations make difficult to implement these kind of neural networks on embedded devices such as mobile phones, smart cameras or advanced driving assistance systems. In this paper, we present a novel layer named Hybrid Cosine Based Convolution that replaces standard convolutional layers using cosine basis to generate filter weights. The proposed layers provide several advantages: faster convergence in training, the receptive field can be increased at no cost and substantially reduce the number of parameters. We evaluate our proposed layers on three competitive classification tasks where our proposed layers can achieve similar (and in some cases better) performances than VGG and ResNet architectures. …

Knowledge Into the Network (KINN) google
The promise of ANNs to automatically discover and extract useful features/patterns from data without dwelling on domain expertise although seems highly promising but comes at the cost of high reliance on large amount of accurately labeled data, which is often hard to acquire and formulate especially in time-series domains like anomaly detection, natural disaster management, predictive maintenance and healthcare. As these networks completely rely on data and ignore a very important modality i.e. expert, they are unable to harvest any benefit from the expert knowledge, which in many cases is very useful. In this paper, we try to bridge the gap between these data driven and expert knowledge based systems by introducing a novel framework for incorporating expert knowledge into the network (KINN). Integrating expert knowledge into the network has three key advantages: (a) Reduction in the amount of data needed to train the model, (b) provision of a lower bound on the performance of the resulting classifier by obtaining the best of both worlds, and (c) improved convergence of model parameters (model converges in smaller number of epochs). Although experts are extremely good in solving different tasks, there are some trends and patterns, which are usually hidden only in the data. Therefore, KINN employs a novel residual knowledge incorporation scheme, which can automatically determine the quality of the predictions made by the expert and rectify it accordingly by learning the trends/patterns from data. Specifically, the method tries to use information contained in one modality to complement information missed by the other. We evaluated KINN on a real world traffic flow prediction problem. KINN significantly superseded performance of both the expert and as well as the base network (LSTM in this case) when evaluated in isolation, highlighting its superiority for the task. …