Deducer google
An R Graphical User Interface (GUI) for Everyone: Deducer is designed to be a free easy to use alternative to proprietary data analysis software such as SPSS, JMP, and Minitab. It has a menu system to do common data manipulation and analysis tasks, and an excel-like spreadsheet in which to view and edit data frames. The goal of the project is two fold.
1. Provide an intuitive graphical user interface (GUI) for R, encouraging non-technical users to learn and perform analyses without programming getting in their way.
2. Increase the efficiency of expert R users when performing common tasks by replacing hundreds of keystrokes with a few mouse clicks. Also, as much as possible the GUI should not get in their way if they just want to do some programming. Deducer is designed to be used with the Java based R console JGR, though it supports a number of other R environments (e.g. Windows RGUI and RTerm).

Adaptive Stress Testing (AST) google
Finding the most likely path to a set of failure states is important to the analysis of safety-critical dynamic systems. While efficient solutions exist for certain classes of systems, a scalable general solution for stochastic, partially-observable, and continuous-valued systems remains challenging. Existing approaches in formal and simulation-based methods either cannot scale to large systems or are computationally inefficient. This paper presents adaptive stress testing (AST), a framework for searching a simulator for the most likely path to a failure event. We formulate the problem as a Markov decision process and use reinforcement learning to optimize it. The approach is simulation-based and does not require internal knowledge of the system. As a result, the approach is very suitable for black box testing of large systems. We present formulations for both systems where the state is fully-observable and partially-observable. In the latter case, we present a modified Monte Carlo tree search algorithm that only requires access to the pseudorandom number generator of the simulator to overcome partial observability. We also present an extension of the framework, called differential adaptive stress testing (DAST), that can be used to find failures that occur in one system but not in another. This type of differential analysis is useful in applications such as regression testing, where one is concerned with finding areas of relative weakness compared to a baseline. We demonstrate the effectiveness of the approach on an aircraft collision avoidance application, where we stress test a prototype aircraft collision avoidance system to find high-probability scenarios of near mid-air collisions. …

Semi-Supervised Explicit Dialogue State Tracker (SEDST) google
The task of dialogue generation aims to automatically provide responses given previous utterances. Tracking dialogue states is an important ingredient in dialogue generation for estimating users’ intention. However, the \emph{expensive nature of state labeling} and the \emph{weak interpretability} make the dialogue state tracking a challenging problem for both task-oriented and non-task-oriented dialogue generation: For generating responses in task-oriented dialogues, state tracking is usually learned from manually annotated corpora, where the human annotation is expensive for training; for generating responses in non-task-oriented dialogues, most of existing work neglects the explicit state tracking due to the unlimited number of dialogue states. In this paper, we propose the \emph{semi-supervised explicit dialogue state tracker} (SEDST) for neural dialogue generation. To this end, our approach has two core ingredients: \emph{CopyFlowNet} and \emph{posterior regularization}. Specifically, we propose an encoder-decoder architecture, named \emph{CopyFlowNet}, to represent an explicit dialogue state with a probabilistic distribution over the vocabulary space. To optimize the training procedure, we apply a posterior regularization strategy to integrate indirect supervision. Extensive experiments conducted on both task-oriented and non-task-oriented dialogue corpora demonstrate the effectiveness of our proposed model. Moreover, we find that our proposed semi-supervised dialogue state tracker achieves a comparable performance as state-of-the-art supervised learning baselines in state tracking procedure. …

Sequeval google
In this paper, we present sequeval, a software tool capable of performing the offline evaluation of a recommender system designed to suggest a sequence of items. A sequence-based recommender is trained considering the sequences already available in the system and its purpose is to generate a personalized sequence starting from an initial seed. This tool automatically evaluates the sequence-based recommender considering a comprehensive set of eight different metrics adapted to the sequential scenario. sequeval has been developed following the best practices of software extensibility. For this reason, it is possible to easily integrate and evaluate novel recommendation techniques. sequeval is publicly available as an open source tool and it aims to become a focal point for the community to assess sequence-based recommender systems. …