Outranking Methods (OM)
A classical problem in the field of Multiple Criteria Decision Making (mcdm) is to build a preference relation on a set of multi-attributed alternatives on the basis of preferences expresses on each attribute and inter-attribute information such as weights. Based on this preference relation (or, more generally, on various relations obtained following a robustness analysis) a recommendation is elaborated (e.g. exhibiting of a subset likely to contain the best alternatives). …
Multi-Relevance Transfer Learning (MRTL)
Transfer learning aims to faciliate learning tasks in a label-scarce target domain by leveraging knowledge from a related source domain with plenty of labeled data. Often times we may have multiple domains with little or no labeled data as targets waiting to be solved. Most existing efforts tackle target domains separately by modeling the `source-target’ pairs without exploring the relatedness between them, which would cause loss of crucial information, thus failing to achieve optimal capability of knowledge transfer. In this paper, we propose a novel and effective approach called Multi-Relevance Transfer Learning (MRTL) for this purpose, which can simultaneously transfer different knowledge from the source and exploits the shared common latent factors between target domains. Specifically, we formulate the problem as an optimization task based on a collective nonnegative matrix tri-factorization framework. The proposed approach achieves both source-target transfer and target-target leveraging by sharing multiple decomposed latent subspaces. Further, an alternative minimization learning algorithm is developed with convergence guarantee. Empirical study validates the performance and effectiveness of MRTL compared to the state-of-the-art methods. …
VizRec
Visual representations of data (visualizations) are tools of great importance and widespread use in data analytics as they provide users visual insight to patterns in the observed data in a simple and effective way. However, since visualizations tools are applied to sample data, there is a a risk of visualizing random fluctuations in the sample rather than a true pattern in the data. This problem is even more significant when visualization is used to identify interesting patterns among many possible possibilities, or to identify an interesting deviation in a pair of observations among many possible pairs, as commonly done in visual recommendation systems. We present VizRec, a framework for improving the performance of visual recommendation systems by quantifying the statistical significance of recommended visualizations. The proposed methodology allows to control the probability of misleading visual recommendations using both classical statistical testing procedures and a novel application of the Vapnik Chervonenkis (VC) dimension method which is a fundamental concept in statistical learning theory. …
Pan-Density Network (PaDNet)
Crowd counting in varying density scenes is a challenging problem in artificial intelligence (AI) and pattern recognition. Recently, deep convolutional neural networks (CNNs) are used to tackle this problem. However, the single-column CNN cannot achieve high accuracy and robustness in diverse density scenes. Meanwhile, multi-column CNNs lack effective way to accurately learn the features of different scales for estimating crowd density. To address these issues, we propose a novel pan-density level deep learning model, named as Pan-Density Network (PaDNet). Specifically, the PaDNet learns multi-scale features by three steps. First, several sub-networks are pre-trained on crowd images with different density-levels. Then, a Scale Reinforcement Net (SRN) is utilized to reinforce the scale features. Finally, a Fusion Net fuses all of the scale features to generate the final density map. Experiments on four crowd counting benchmark datasets, the ShanghaiTech, the UCF\_CC\_50, the UCSD, and the UCF-QRNF, indicate that the PaDNet achieves the best performance and has high robustness in pan-density crowd counting compared with other state-of-the-art algorithms. …
If you did not already know
24 Sunday Apr 2022
Posted What is ...
in