Stacked Generative Adversarial Networks (SGAN)
In this paper we aim to leverage the powerful bottom-up discriminative representations to guide a top-down generative model. We propose a novel generative model named Stacked Generative Adversarial Networks (SGAN), which is trained to invert the hierarchical representations of a discriminative bottom-up deep network. Our model consists of a top-down stack of GANs, each trained to generate ‘plausible’ lower-level representations, conditioned on higher-level representations. A representation discriminator is introduced at each feature hierarchy to encourage the representation manifold of the generator to align with that of the bottom-up discriminative network, providing intermediate supervision. In addition, we introduce a conditional loss that encourages the use of conditional information from the layer above, and a novel entropy loss that maximizes a variational lower bound on the conditional entropy of generator outputs. To the best of our knowledge, the entropy loss is the first attempt to tackle the conditional model collapse problem that is common in conditional GANs. We first train each GAN of the stack independently, and then we train the stack end-to-end. Unlike the original GAN that uses a single noise vector to represent all the variations, our SGAN decomposes variations into multiple levels and gradually resolves uncertainties in the top-down generative process. Experiments demonstrate that SGAN is able to generate diverse and high-quality images, as well as being more interpretable than a vanilla GAN. …
Bayesian Heatmap
Unstructured data from diverse sources, such as social media and aerial imagery, can provide valuable up-to-date information for intelligent situation assessment. Mining these different information sources could bring major benefits to applications such as situation awareness in disaster zones and mapping the spread of diseases. Such applications depend on classifying the situation across a region of interest, which can be depicted as a spatial ‘heatmap’. Annotating unstructured data using crowdsourcing or automated classifiers produces individual classifications at sparse locations that typically contain many errors. We propose a novel Bayesian approach that models the relevance, error rates and bias of each information source, enabling us to learn a spatial Gaussian Process classifier by aggregating data from multiple sources with varying reliability and relevance. Our method does not require gold-labelled data and can make predictions at any location in an area of interest given only sparse observations. We show empirically that our approach can handle noisy and biased data sources, and that simultaneously inferring reliability and transferring information between neighbouring reports leads to more accurate predictions. We demonstrate our method on two real-world problems from disaster response, showing how our approach reduces the amount of crowdsourced data required and can be used to generate valuable heatmap visualisations from SMS messages and satellite images. …
Databaiting
Databaiting I would suggest is: to entice someone to submit their data by eliciting an emotional response. …
Representation Adversarial Learning Network (RepGAN)
A good representation for arbitrarily complicated data should have the capability of semantic generation, clustering and reconstruction. Previous research has already achieved impressive performance on either one. This paper aims at learning a disentangled representation effective for all of them in an unsupervised way. To achieve all the three tasks together, we learn the forward and inverse mapping between data and representation on the basis of a symmetric adversarial process. In theory, we minimize the upper bound of the two conditional entropy loss between the latent variables and the observations together to achieve the cycle consistency. The newly proposed RepGAN is tested on MNIST, fashionMNIST, CelebA, and SVHN datasets to perform unsupervised or semi-supervised classification, generation and reconstruction tasks. The result demonstrates that RepGAN is able to learn a useful and competitive representation. To the author’s knowledge, our work is the first one to achieve both a high unsupervised classification accuracy and low reconstruction error on MNIST. …
If you did not already know
23 Saturday Apr 2022
Posted What is ...
in