Deep Motion Boundary Detection (MoBoNet) google
Motion boundary detection is a crucial yet challenging problem. Prior methods focus on analyzing the gradients and distributions of optical flow fields, or use hand-crafted features for motion boundary learning. In this paper, we propose the first dedicated end-to-end deep learning approach for motion boundary detection, which we term as MoBoNet. We introduce a refinement network structure which takes source input images, initial forward and backward optical flows as well as corresponding warping errors as inputs and produces high-resolution motion boundaries. Furthermore, we show that the obtained motion boundaries, through a fusion sub-network we design, can in turn guide the optical flows for removing the artifacts. The proposed MoBoNet is generic and works with any optical flows. Our motion boundary detection and the refined optical flow estimation achieve results superior to the state of the art. …

General Filter Convolutional Neural Network (GFNN) google
We applied pre-defined kernels also known as filters or masks developed for image processing to convolution neural network. Instead of letting neural networks find its own kernels, we used 41 different general-purpose kernels of blurring, edge detecting, sharpening, discrete cosine transformation, etc. for the first layer of the convolution neural networks. This architecture, thus named as general filter convolutional neural network (GFNN), can reduce training time by 30% with a better accuracy compared to the regular convolutional neural network (CNN). GFNN also can be trained to achieve 90% accuracy with only 500 samples. Furthermore, even though these kernels are not specialized for the MNIST dataset, we achieved 99.56% accuracy without ensemble nor any other special algorithms. …

Self-Service Semantic Suite (S4) google
The Self-Service Semantic Suite (S4) provides a set of services for low-cost, on-demand text analytics and metadata management on the cloud.
S4 provides the following services:
· Text analytics services for news, Life Science and social media that allow you to extract valuable meaning and insights used to manage your business
· On-demand, fast and reliable access to Linked Datasets, such as DBpedia, Freebase and GeoNames. These datasets provide facts you can use to enhance your semantic analysis.
· A self-managed or fully-managed scalable RDF database available as-a-service, so that you can search and update semantic facts loaded from Linked Open Data or your own documents …


JUMPER google
In early years, text classification is typically accomplished by feature-based machine learning models; recently, deep neural networks, as a powerful learning machine, make it possible to work with raw input as the text stands. However, exiting end-to-end neural networks lack explicit interpretation of the prediction. In this paper, we propose a novel framework, JUMPER, inspired by the cognitive process of text reading, that models text classification as a sequential decision process. Basically, JUMPER is a neural system that scans a piece of text sequentially and makes classification decisions at the time it wishes. Both the classification result and when to make the classification are part of the decision process, which is controlled by a policy network and trained with reinforcement learning. Experimental results show that a properly trained JUMPER has the following properties: (1) It can make decisions whenever the evidence is enough, therefore reducing total text reading by 30-40% and often finding the key rationale of prediction. (2) It achieves classification accuracy better than or comparable to state-of-the-art models in several benchmark and industrial datasets. …