SqueezeNet google
SqueezeNet is the name of a deep neural network that was released in 2016. SqueezeNet was developed by researchers at DeepScale, University of California, Berkeley, and Stanford University. In designing SqueezeNet, the authors’ goal was to create a smaller neural network with fewer parameters that can more easily fit into computer memory and can more easily be transmitted over a computer network.
Review: SqueezeNet (Image Classification)


Generalized Variational Inference (GVI) google
This paper introduces a generalized representation of Bayesian inference. It is derived axiomatically, recovering existing Bayesian methods as special cases. We use it to prove that variational inference (VI) based on the Kullback-Leibler Divergence with a variational family Q produces the uniquely optimal Q-constrained approximation to the exact Bayesian inference problem. Surprisingly, this implies that standard VI dominates any other Q-constrained approximation to the exact Bayesian inference problem. This means that alternative Q-constrained approximations such as VI targeted at minimizing other divergences and Expectation Propagation can produce better posteriors than VI only by implicitly targeting more appropriate Bayesian inference problems. Inspired by this, we introduce Generalized Variational Inference (GVI), a modular approach for instead solving such alternative inference problems explicitly. We explore some applications of GVI, including robustness and better marginals. Lastly, we derive black box GVI and apply it to Bayesian Neural Networks as well as Deep Gaussian Processes, where GVI comprehensively outperforms competing methods.
Robust Deep Gaussian Processes


Difference of Convex Functions Algorithm (DCA) google
The DC programming and its DC algorithm (DCA) address the problem of minimizing a function f=g-h (with g,h being lower semicontinuous proper convex functions on R n ) on the whole space. Based on local optimality conditions and DC duality, DCA was successfully applied to a lot of different and various nondifferentiable nonconvex optimization problems to which it quite often gave global solutions and proved to be more robust and more efficient than related standard methods, especially in the large scale setting. The computational efficiency of DCA suggests to us a deeper and more complete study on DC programming, using the special class of DC programs (when either g or h is polyhedral convex) called polyhedral DC programs.
A DCA-Like Algorithm and its Accelerated Version with Application in Data Visualization


W-Net google
Crowd management is of paramount importance when it comes to preventing stampedes and saving lives, especially in a country like China and India where the combined population is a third of the global population. Millions of people convene annually all around the nation to celebrate a myriad of events and crowd count estimation is the linchpin of the crowd management system that could prevent stampedes and save lives. We present a network for crowd counting which reports state of the art results on crowd counting benchmarks. Our contributions are, first, a U-Net inspired model which affords us to report state of the art results. Second, we propose an independent decoding Reinforcement branch which helps the network converge much earlier and also enables the network to estimate density maps with high Structural Similarity Index (SSIM). Third, we discuss the drawbacks of the contemporary architectures and empirically show that even though our architecture achieves state of the art results, the merit may be due to the encoder-decoder pipeline instead. Finally, we report the error analysis which shows that the contemporary line of work is at saturation and leaves certain prominent problems unsolved. …