**Fully Polynomial-Time Approximation Scheme (FPTAS)**

We consider the product knapsack problem, which is the variant of the classical 0-1 knapsack problem where the objective consists of maximizing the product of the profits of the selected items. These profits are allowed to be positive or negative. We show that this recently introduced variant of the knapsack problem is weakly NP-hard and present a fully polynomial-time approximation scheme (FPTAS) for the problem. Moreover, we analyze the approximation quality achieved by a natural extension of the classical greedy procedure to the product knapsack problem. … **Linear Superiorization (LinSup)**

Linear superiorization (abbreviated: LinSup) considers linear programming (LP) problems wherein the constraints as well as the objective function are linear. It allows to steer the iterates of a feasibility-seeking iterative process toward feasible points that have lower (not necessarily minimal) values of the objective function than points that would have been reached by the same feasiblity-seeking iterative process without superiorization. Using a feasibility-seeking iterative process that converges even if the linear feasible set is empty, LinSup generates an iterative sequence that converges to a point that minimizes a proximity function which measures the linear constraints violation. In addition, due to LinSup’s repeated objective function reduction steps such a point will most probably have a reduced objective function value. We present an exploratory experimental result that illustrates the behavior of LinSup on an infeasible LP problem. … **Partially Adaptive Momentum Estimation Method (Padam)**

Adaptive gradient methods, which adopt historical gradient information to automatically adjust the learning rate, have been observed to generalize worse than stochastic gradient descent (SGD) with momentum in training deep neural networks. This leaves how to close the generalization gap of adaptive gradient methods an open problem. In this work, we show that adaptive gradient methods such as Adam, Amsgrad, are sometimes ‘over adapted’. We design a new algorithm, called Partially adaptive momentum estimation method (Padam), which unifies the Adam/Amsgrad with SGD to achieve the best from both worlds. Experiments on standard benchmarks show that Padam can maintain fast convergence rate as Adam/Amsgrad while generalizing as well as SGD in training deep neural networks. These results would suggest practitioners pick up adaptive gradient methods once again for faster training of deep neural networks. … **Text-to-Face (T2F)**

This project combines two of the recent architectures StackGAN and ProGAN for synthesizing faces from textual descriptions. The project uses Face2Text dataset which contains 400 facial images and textual captions for each of them. The data can be obtained by contacting either the RIVAL group or the authors of the aforementioned paper. …

# If you did not already know

**24**
*Thursday*
Mar 2022

Posted What is ...

in