Lookup-Based Convolutional Neural Network (LCNN) google
Porting state of the art deep learning algorithms to resource constrained compute platforms (e.g. VR, AR, wearables) is extremely challenging. We propose a fast, compact, and accurate model for convolutional neural networks that enables efficient learning and inference. We introduce LCNN, a lookup-based convolutional neural network that encodes convolutions by few lookups to a dictionary that is trained to cover the space of weights in CNNs. Training LCNN involves jointly learning a dictionary and a small set of linear combinations. The size of the dictionary naturally traces a spectrum of trade-offs between efficiency and accuracy. Our experimental results on ImageNet challenge show that LCNN can offer 3.2x speedup while achieving 55.1% top-1 accuracy using AlexNet architecture. Our fastest LCNN offers 37.6x speed up over AlexNet while maintaining 44.3% top-1 accuracy. LCNN not only offers dramatic speed ups at inference, but it also enables efficient training. In this paper, we show the benefits of LCNN in few-shot learning and few-iteration learning, two crucial aspects of on-device training of deep learning models. …

Composable Preprocessing Operators (CPO) google
Toolset that enriches ‘mlr’ with a diverse set of preprocessing operators. Composable Preprocessing Operators (‘CPO’s) are first-class R objects that can be applied to data.frames and ‘mlr’ ‘Task’s to modify data, can be attached to ‘mlr’ ‘Learner’s to add preprocessing to machine learning algorithms, and can be composed to form preprocessing pipelines. …

Temporal Automatic Relation Discovery in Sequences (TARDIS) google
Recent empirical results on long-term dependency tasks have shown that neural networks augmented with an external memory can learn the long-term dependency tasks more easily and achieve better generalization than vanilla recurrent neural networks (RNN). We suggest that memory augmented neural networks can reduce the effects of vanishing gradients by creating shortcut (or wormhole) connections. Based on this observation, we propose a novel memory augmented neural network model called TARDIS (Temporal Automatic Relation Discovery in Sequences). The controller of TARDIS can store a selective set of embeddings of its own previous hidden states into an external memory and revisit them as and when needed. For TARDIS, memory acts as a storage for wormhole connections to the past to propagate the gradients more effectively and it helps to learn the temporal dependencies. The memory structure of TARDIS has similarities to both Neural Turing Machines (NTM) and Dynamic Neural Turing Machines (D-NTM), but both read and write operations of TARDIS are simpler and more efficient. We use discrete addressing for read/write operations which helps to substantially to reduce the vanishing gradient problem with very long sequences. Read and write operations in TARDIS are tied with a heuristic once the memory becomes full, and this makes the learning problem simpler when compared to NTM or D-NTM type of architectures. We provide a detailed analysis on the gradient propagation in general for MANNs. We evaluate our models on different long-term dependency tasks and report competitive results in all of them. …

Restricted Mean Survivor Average Causal Effect (RM-SACE) google
In semicompeting risks problems, nonterminal time-to-event outcomes such as time to hospital readmission are subject to truncation by death. These settings are often modeled with illness-death models for the hazards of the terminal and nonterminal events, but evaluating causal treatment effects with hazard models is problematic due to conditioning on survival (a post-treatment outcome) that is embedded in the definition of a hazard. Extending an existing survivor average causal effect (SACE) estimand, we frame the evaluation of treatment effects in the context of semicompeting risks with principal stratification and introduce two new causal estimands: the time-varying survivor average causal effect (TV-SACE) and the restricted mean survivor average causal effect (RM-SACE). These principal causal effects are defined among units that would survive regardless of assigned treatment. We adopt a Bayesian estimation procedure that parameterizes illness-death models for both treatment arms. We outline a frailty specification that can accommodate within-person correlation between nonterminal and terminal event times, and we discuss potential avenues for adding model flexibility. The method is demonstrated in the context of hospital readmission among late-stage pancreatic cancer patients. …