Distant Supervision as a Regularizer (DSReg) google
In this paper, we aim at tackling a general issue in NLP tasks where some of the negative examples are highly similar to the positive examples, i.e., hard-negative examples. We propose the distant supervision as a regularizer (DSReg) approach to tackle this issue. The original task is converted to a multi-task learning problem, in which distant supervision is used to retrieve hard-negative examples. The obtained hard-negative examples are then used as a regularizer. The original target objective of distinguishing positive examples from negative examples is jointly optimized with the auxiliary task objective of distinguishing softened positive (i.e., hard-negative examples plus positive examples) from easy-negative examples. In the neural context, this can be done by outputting the same representation from the last neural layer to different $softmax$ functions. Using this strategy, we can improve the performance of baseline models in a range of different NLP tasks, including text classification, sequence labeling and reading comprehension. …

Prior Network google
Ensemble of Neural Network (NN) models are known to yield improvements in accuracy. Furthermore, they have been empirically shown to yield robust measures of uncertainty, though without theoretical guarantees. However, ensembles come at high computational and memory cost, which may be prohibitive for certain application. There has been significant work done on the distillation of an ensemble into a single model. Such approaches decrease computational cost and allow a single model to achieve accuracy comparable to that of an ensemble. However, information about the \emph{diversity} of the ensemble, which can yield estimates of \emph{knowledge uncertainty}, is lost. Recently, a new class of models, called Prior Networks, has been proposed, which allows a single neural network to explicitly model a distribution over output distributions, effectively emulating an ensemble. In this work ensembles and Prior Networks are combined to yield a novel approach called \emph{Ensemble Distribution Distillation} (EnD$^2$), which allows distilling an ensemble into a single Prior Network. This allows a single model to retain both the improved classification performance as well as measures of diversity of the ensemble. In this initial investigation the properties of EnD$^2$ have been investigated and confirmed on an artificial dataset. …

Truncated Normal Distribution google
In probability and statistics, the truncated normal distribution is the probability distribution derived from that of a normally distributed random variable by bounding the random variable from either below or above (or both). The truncated normal distribution has wide applications in statistics and econometrics. For example, it is used to model the probabilities of the binary outcomes in the probit model and to model censored data in the Tobit model. …

Semantic-Aware Knowledge prEservation (SAKE) google
Sketch-based image retrieval (SBIR) is widely recognized as an important vision problem which implies a wide range of real-world applications. Recently, research interests arise in solving this problem under the more realistic and challenging setting of zero-shot learning. In this paper, we investigate this problem from the viewpoint of domain adaptation which we show is critical in improving feature embedding in the zero-shot scenario. Based on a framework which starts with a pre-trained model on ImageNet and fine-tunes it on the training set of SBIR benchmark, we advocate the importance of preserving previously acquired knowledge, e.g., the rich discriminative features learned from ImageNet, so as to improve the model’s transfer ability. For this purpose, we design an approach named Semantic-Aware Knowledge prEservation (SAKE), which fine-tunes the pre-trained model in an economical way and leverages semantic information, e.g., inter-class relationship, to achieve the goal of knowledge preservation. Zero-shot experiments on two extended SBIR datasets, TU-Berlin and Sketchy, verify the superior performance of our approach. Extensive diagnostic experiments validate that knowledge preserved benefits SBIR in zero-shot settings, as a large fraction of the performance gain is from the more properly structured feature embedding for photo images. …