Hierarchical LSTMs for Contextual Emotion Detection (HRLCE) google
This paper describes the system submitted by ANA Team for the SemEval-2019 Task 3: EmoContext. We propose a novel Hierarchical LSTMs for Contextual Emotion Detection (HRLCE) model. It classifies the emotion of an utterance given its conversational context. The results show that, in this task, our HRCLE outperforms the most recent state-of-the-art text classification framework: BERT. We combine the results generated by BERT and HRCLE to achieve an overall score of 0.7709 which ranked 5th on the final leader board of the competition among 165 Teams. …

Charged String Tensor Networks google
Tensor network methods provide an intuitive graphical language to describe quantum states, channels, open quantum systems and a class of numerical approximation methods that efficiently simulate certain many-body states in one spatial dimension. There are two fundamental types of tensor networks in wide use today. The most common is similar to quantum circuits. The second is the braided class of tensor networks, used in topological quantum computing. Recently a third class of tensor networks was discovered by Jaffe, Liu and Wozniakowski—the JLW-model—notably, the wires carry charge excitations. The rules in which network components can be moved, merged and manipulated in a graphical form of reasoning take an elegant form. For instance the relative charge locations on wires carries precise meaning and changing the ordering modifies a connected network specifically by a complex number. The type of isotopy discovered in the topological JLW-model provides an alternative means to reason about quantum information, computation and protocols. Here we recall the tensor-network building blocks used in a controlled-NOT gate. Some open problems related to the JLW-model are given. …

RecoGym google
Recommender Systems are becoming ubiquitous in many settings and take many forms, from product recommendation in e-commerce stores, to query suggestions in search engines, to friend recommendation in social networks. Current research directions which are largely based upon supervised learning from historical data appear to be showing diminishing returns with a lot of practitioners report a discrepancy between improvements in offline metrics for supervised learning and the online performance of the newly proposed models. One possible reason is that we are using the wrong paradigm: when looking at the long-term cycle of collecting historical performance data, creating a new version of the recommendation model, A/B testing it and then rolling it out. We see that there a lot of commonalities with the reinforcement learning (RL) setup, where the agent observes the environment and acts upon it in order to change its state towards better states (states with higher rewards). To this end we introduce RecoGym, an RL environment for recommendation, which is defined by a model of user traffic patterns on e-commerce and the users response to recommendations on the publisher websites. We believe that this is an important step forward for the field of recommendation systems research, that could open up an avenue of collaboration between the recommender systems and reinforcement learning communities and lead to better alignment between offline and online performance metrics. …

Flexible Cross-Modal Hashing (Flex-CMH) google
Hashing has been widely adopted for large-scale data retrieval in many domains, due to its low storage cost and high retrieval speed. Existing cross-modal hashing methods optimistically assume that the correspondence between training samples across modalities are readily available. This assumption is unrealistic in practical applications. In addition, these methods generally require the same number of samples across different modalities, which restricts their flexibility. We propose a flexible cross-modal hashing approach (Flex-CMH) to learn effective hashing codes from weakly-paired data, whose correspondence across modalities are partially (or even totally) unknown. FlexCMH first introduces a clustering-based matching strategy to explore the local structure of each cluster, and thus to find the potential correspondence between clusters (and samples therein) across modalities. To reduce the impact of an incomplete correspondence, it jointly optimizes in a unified objective function the potential correspondence, the cross-modal hashing functions derived from the correspondence, and a hashing quantitative loss. An alternative optimization technique is also proposed to coordinate the correspondence and hash functions, and to reinforce the reciprocal effects of the two objectives. Experiments on publicly multi-modal datasets show that FlexCMH achieves significantly better results than state-of-the-art methods, and it indeed offers a high degree of flexibility for practical cross-modal hashing tasks. …