**CapsE**

In this paper, we introduce an embedding model, named CapsE, exploring a capsule network to model relationship triples \textit{(subject, relation, object)}. Our CapsE represents each triple as a 3-column matrix where each column vector represents the embedding of an element in the triple. This 3-column matrix is then fed to a convolution layer where multiple filters are operated to generate different feature maps. These feature maps are used to construct capsules in the first capsule layer. Capsule layers are connected via dynamic routing mechanism. The last capsule layer consists of only one capsule to produce a vector output. The length of this vector output is used to measure the plausibility of the triple. Our proposed CapsE obtains state-of-the-art link prediction results for knowledge graph completion on two benchmark datasets: WN18RR and FB15k-237, and outperforms strong search personalization baselines on SEARCH17 dataset. … **Current Environment Inference (CEI)**

In Business Intelligence, accurate predictive modeling is the key for providing adaptive decisions. We studied predictive modeling problems in this research which was motivated by real-world cases that Microsoft data scientists encountered while dealing with e-commerce transaction fraud control decisions using transaction streaming data in an uncertain probabilistic decision environment. The values of most online transactions related features can return instantly, while the true fraud labels only return after a stochastic delay. Using partially mature data directly for predictive modeling in an uncertain probabilistic decision environment would lead to significant inaccuracy on risk decision-making. To improve accurate estimation of the probabilistic prediction environment, which leads to more accurate predictive modeling, two frameworks, Current Environment Inference (CEI) and Future Environment Inference (FEI), are proposed. These frameworks generated decision environment related features using long-term fully mature and short-term partially mature data, and the values of those features were estimated using varies of learning methods, including linear regression, random forest, gradient boosted tree, artificial neural network, and recurrent neural network. Performance tests were conducted using some e-commerce transaction data from Microsoft. Testing results suggested that proposed frameworks significantly improved the accuracy of decision environment estimation. … **AdaFlow**

We tackle unsupervised anomaly detection (UAD), a problem of detecting data that significantly differ from normal data. UAD is typically solved by using density estimation. Recently, deep neural network (DNN)-based density estimators, such as Normalizing Flows, have been attracting attention. However, one of their drawbacks is the difficulty in adapting them to the change in the normal data’s distribution. To address this difficulty, we propose AdaFlow, a new DNN-based density estimator that can be easily adapted to the change of the distribution. AdaFlow is a unified model of a Normalizing Flow and Adaptive Batch-Normalizations, a module that enables DNNs to adapt to new distributions. AdaFlow can be adapted to a new distribution by just conducting forward propagation once per sample; hence, it can be used on devices that have limited computational resources. We have confirmed the effectiveness of the proposed model through an anomaly detection in a sound task. We also propose a method of applying AdaFlow to the unpaired cross-domain translation problem, in which one has to train a cross-domain translation model with only unpaired samples. We have confirmed that our model can be used for the cross-domain translation problem through experiments on image datasets. … **Randomised Bayesian Least-Squares Policy Iteration (RBLSPI)**

We introduce Bayesian least-squares policy iteration (BLSPI), an off-policy, model-free, policy iteration algorithm that uses the Bayesian least-squares temporal-difference (BLSTD) learning algorithm to evaluate policies. An online variant of BLSPI has been also proposed, called randomised Bayesian least-squares policy iteration (RBLSPI), that improves its policy based on an incomplete policy evaluation step. In online setting, the exploration-exploitation dilemma should be addressed as we try to discover the optimal policy by using samples collected by ourselves. RBLSPI exploits the advantage of BLSTD to quantify our uncertainty about the value function. Inspired by Thompson sampling, RBLSPI first samples a value function from a posterior distribution over value functions, and then selects actions based on the sampled value function. The effectiveness and the exploration abilities of RBLSPI are demonstrated experimentally in several environments. …

# If you did not already know

**11**
*Friday*
Feb 2022

Posted What is ...

in