AdapterNet
Deep neural networks have demonstrated impressive performance in various machine learning tasks. However, they are notoriously sensitive to changes in data distribution. Often, even a slight change in the distribution can lead to drastic performance reduction. Artificially augmenting the data may help to some extent, but in most cases, fails to achieve model invariance to the data distribution. Some examples where this sub-class of domain adaptation can be valuable are various imaging modalities such as thermal imaging, X-ray, ultrasound, and MRI, where changes in acquisition parameters or acquisition device manufacturer will result in different representation of the same input. Our work shows that standard finetuning fails to adapt the model in certain important cases. We propose a novel method of adapting to a new data source, and demonstrate near perfect adaptation on a customized ImageNet benchmark. …
InfoSSM
The goal of system identification is to learn about underlying physics dynamics behind the observed time-series data. To model the nonparametric and probabilistic dynamics model, Gaussian process state-space models (GPSSMs) have been widely studied; GPs are not only capable to represent nonlinear dynamics, but estimate the uncertainty of prediction and avoid over-fitting. Traditional GPSSMs, however, are based on Gaussian transition model, thus often have difficulty in describing multi-modal motions. To resolve the challenge, this thesis proposes a model using multiple GPs and extends the GPSSM to information-theoretic framework by introducing a mutual information regularizer helping the model to learn interpretable and disentangled representation of multi-modal transition dynamics model. Experiment results show that the proposed model not only successfully represents the observed system but distinguishes the dynamics mode that governs the given observation sequence. …
Message Importance Divergence (MID)
Information transfer which reveals the state variation of variables can play a vital role in big data analytics and processing. In fact, the measure for information transfer can reflect the system change from the statistics by using the variable distributions, similar to KL divergence and Renyi divergence. Furthermore, in terms of the information transfer in big data, small probability events dominate the importance of the total message to some degree. Therefore, it is significant to design an information transfer measure based on the message importance which emphasizes the small probability events. In this paper, we propose the message importance divergence (MID) and investigate its characteristics and applications on three aspects. First, the message importance transfer capacity based on MID is presented to offer an upper bound for the information transfer with disturbance. Then, we utilize the MID to guide the queue length selection, which is the fundamental problem considered to have higher social or academic value in the caching operation of mobile edge computing. Finally, we extend the MID to the continuous case and discuss the robustness by using it to measuring information distance. …
Language Model
A statistical language model assigns a probability to a sequence of m words by means of a probability distribution. Language modeling is used in many natural language processing applications such as speech recognition, machine translation, part-of-speech tagging, parsing and information retrieval. …
If you did not already know
04 Friday Feb 2022
Posted What is ...
in