Hierarchical Attentive Heterogeneous Information Network Embedding (HAHE)
Given the intractability of large scale HIN, network embedding which learns low dimensional proximity-preserved representations for nodes in the new space becomes a natural way to analyse HIN. However, two challenges arise in HIN embedding. (1) Different HIN structures with different semantic meanings play different roles in capturing relationships among nodes in HIN, how can we learn personalized preferences over different meta-paths for each individual node in HIN? (2) With the number of large scale HIN increasing dramatically in various web services, how can we update the embedding information of new nodes in an efficient way? To tackle these challenges, we propose a Hierarchical Attentive Heterogeneous information network Embedding (HAHE ) model which is capable of learning personalized meta-path preferences for each node as well as updating the embedding information for each new node efficiently with only its neighbor node information. The proposed HAHE model extracts the semantic relationships among nodes in the semantic space based on different meta-paths and adopts a neighborhood attention layer to conduct weighted aggregations of neighborhood structure features for each node, enabling the embedding information of each new node to be updated efficiently. Besides, a meta-path attention layer is also employed to learn the personalized meta-path preferences for each individual node. Extensive experiments on several real-world datasets show that our proposed HAHE model significantly outperforms the state-of-the-art methods in terms of various evaluation metrics. …
Restrictive Federated Model Selection (RFMS)
A novel machine learning optimization process coined Restrictive Federated Model Selection (RFMS) is proposed under the scenario, for example, when data from healthcare units can not leave the site it is situated on and it is forbidden to carry out training algorithms on remote data sites due to either technical or privacy and trust concerns. To carry out a clinical research under this scenario, an analyst could train a machine learning model only on local data site, but it is still possible to execute a statistical query at a certain cost in the form of sending a machine learning model to some of the remote data sites and get the performance measures as feedback, maybe due to prediction being usually much cheaper. Compared to federated learning, which is optimizing the model parameters directly by carrying out training across all data sites, RFMS trains model parameters only on one local data site but optimizes hyper-parameters across other data sites jointly since hyper-parameters play an important role in machine learning performance. The aim is to get a Pareto optimal model with respective to both local and remote unseen prediction losses, which could generalize well across data sites. In this work, we specifically consider high dimensional data with shifted distributions over data sites. As an initial investigation, Bayesian Optimization especially multi-objective Bayesian Optimization is used to guide an adaptive hyper-parameter optimization process to select models under the RFMS scenario. Empirical results show that solely using the local data site to tune hyper-parameters generalizes poorly across data sites, compared to methods that utilize the local and remote performances. Furthermore, in terms of dominated hypervolumes, multi-objective Bayesian Optimization algorithms show increased performance across multiple data sites among other candidates. …
Inverse Transport Network
We introduce inverse transport networks as a learning architecture for inverse rendering problems where, given input image measurements, we seek to infer physical scene parameters such as shape, material, and illumination. During training, these networks are evaluated not only in terms of how close they can predict groundtruth parameters, but also in terms of whether the parameters they produce can be used, together with physically-accurate graphics renderers, to reproduce the input image measurements. To enable training of inverse transport networks using stochastic gradient descent, we additionally create a general-purpose, physically-accurate differentiable renderer, which can be used to estimate derivatives of images with respect to arbitrary physical scene parameters. Our experiments demonstrate that inverse transport networks can be trained efficiently using differentiable rendering, and that they generalize to scenes with completely unseen geometry and illumination better than networks trained without appearance- matching regularization. …
CenterNet
Detection identifies objects as axis-aligned boxes in an image. Most successful object detectors enumerate a nearly exhaustive list of potential object locations and classify each. This is wasteful, inefficient, and requires additional post-processing. In this paper, we take a different approach. We model an object as a single point — the center point of its bounding box. Our detector uses keypoint estimation to find center points and regresses to all other object properties, such as size, 3D location, orientation, and even pose. Our center point based approach, CenterNet, is end-to-end differentiable, simpler, faster, and more accurate than corresponding bounding box based detectors. CenterNet achieves the best speed-accuracy trade-off on the MS COCO dataset, with 28.1% AP at 142 FPS, 37.4% AP at 52 FPS, and 45.1% AP with multi-scale testing at 1.4 FPS. We use the same approach to estimate 3D bounding box in the KITTI benchmark and human pose on the COCO keypoint dataset. Our method performs competitively with sophisticated multi-stage methods and runs in real-time. …
If you did not already know
02 Wednesday Feb 2022
Posted What is ...
in