ANNETT-O google
Deep learning models, while effective and versatile, are becoming increasingly complex, often including multiple overlapping networks of arbitrary depths, multiple objectives and non-intuitive training methodologies. This makes it increasingly difficult for researchers and practitioners to design, train and understand them. In this paper we present ANNETT-O, a much-needed, generic and computer-actionable vocabulary for researchers and practitioners to describe their deep learning configurations, training procedures and experiments. The proposed ontology focuses on topological, training and evaluation aspects of complex deep neural configurations, while keeping peripheral entities more succinct. Knowledge bases implementing ANNETT-O can support a wide variety of queries, providing relevant insights to users. In addition to a detailed description of the ontology, we demonstrate its suitability to the task via a number of hypothetical use-cases of increasing complexity. …

Entity and Features google
The article deals with the problem which led to Big Data. Big Data information technology is the set of methods and means of processing different types of structured and unstructured dynamic large amounts of data for their analysis and use of decision support. Features of NoSQL databases and categories are described. The developed Big Data Model ‘Entity and Features’ allows determining the distance between the sources of data on the availability of information about a particular entity. The information structure of Big Data has been devised. It became a basis for further research and for concentrating on a problem of development of diverse data without their preliminary integration. …

Since Cosine Crow Search Algorithm (SCCSA) google
This paper presents a novel hybrid algorithm named Since Cosine Crow Search Algorithm. To propose the SCCSA, two novel algorithms are considered including Crow Search Algorithm (CSA) and Since Cosine Algorithm (SCA). The advantages of the two algorithms are considered and utilize to design an efficient hybrid algorithm which can perform significantly better in various benchmark functions. The combination of concept and operators of the two algorithms enable the SCCSA to make an appropriate trade-off between exploration and exploitation abilities of the algorithm. To evaluate the performance of the proposed SCCSA, seven well-known benchmark functions are utilized. The results indicated that the proposed hybrid algorithm is able to provide very competitive solution comparing to other state-of-the-art meta heuristics. …

Backplay google
A long-standing problem in model free reinforcement learning (RL) is that it requires a large number of trials to learn a good policy, especially in environments with sparse rewards. We explore a method to increase the sample efficiency of RL when we have access to demonstrations. Our approach, which we call Backplay, uses a single demonstration to construct a curriculum for a given task. Rather than starting each training episode in the environment’s fixed initial state, we start the agent near the end of the demonstration and move the starting point backwards during the course of training until we reach the initial state. We perform experiments in a competitive four player game (Pommerman) and a path-finding maze game. We find that this weak form of guidance provides significant gains in sample complexity with a stark advantage in sparse reward environments. In some cases, standard RL did not yield any improvement while Backplay reached success rates greater than 50% and generalized to unseen initial conditions in the same amount of training time. Additionally, we see that agents trained via Backplay can learn policies superior to those of the original demonstration. …