KL-Hardness google
We introduce KL-hardness, a new notion of hardness for search problems which on the one hand is satisfied by all one-way functions and on the other hand implies both next-block pseudoentropy and inaccessible-entropy, two forms of computational entropy used in recent constructions of pseudorandom generators and statistically hiding commitment schemes, respectively. Thus, KL-hardness unifies the latter two notions of computational entropy and sheds light on the apparent ‘duality’ between them. Additionally, it yields a more modular and illuminating proof that one-way functions imply next-block inaccessible entropy, similar in structure to the proof that one-way functions imply next-block pseudoentropy (Vadhan and Zheng, STOC ’12). …

Keypoint Attended Visual Attention Network (KAVAN) google
As an intuitive way of expression emotion, the animated Graphical Interchange Format (GIF) images have been widely used on social media. Most previous studies on automated GIF emotion recognition fail to effectively utilize GIF’s unique properties, and this potentially limits the recognition performance. In this study, we demonstrate the importance of human related information in GIFs and conduct human-centered GIF emotion recognition with a proposed Keypoint Attended Visual Attention Network (KAVAN). The framework consists of a facial attention module and a hierarchical segment temporal module. The facial attention module exploits the strong relationship between GIF contents and human characters, and extracts frame-level visual feature with a focus on human faces. The Hierarchical Segment LSTM (HS-LSTM) module is then proposed to better learn global GIF representations. Our proposed framework outperforms the state-of-the-art on the MIT GIFGIF dataset. Furthermore, the facial attention module provides reliable facial region mask predictions, which improves the model’s interpretability. …

Flexible Clustered Lifelong Learning (FCL3) google
Consider the lifelong learning paradigm whose objective is to learn a sequence of tasks depending on previous experiences, e.g., knowledge library or deep network weights. However, the knowledge libraries or deep networks for most recent lifelong learning models are with prescribed size, and can degenerate the performance for both learned tasks and coming ones when facing with a new task environment (cluster). To address this challenge, we propose a novel incremental clustered lifelong learning framework with two knowledge libraries: feature learning library and model knowledge library, called Flexible Clustered Lifelong Learning (FCL3). Specifically, the feature learning library modeled by an autoencoder architecture maintains a set of representation common across all the observed tasks, and the model knowledge library can be self-selected by identifying and adding new representative models (clusters). When a new task arrives, our proposed FCL3 model firstly transfers knowledge from these libraries to encode the new task, i.e., effectively and selectively soft-assigning this new task to multiple representative models over feature learning library. Then, 1) the new task with a higher outlier probability will then be judged as a new representative, and used to redefine both feature learning library and representative models over time; or 2) the new task with lower outlier probability will only refine the feature learning library. For model optimization, we cast this lifelong learning problem as an alternating direction minimization problem as a new task comes. Finally, we evaluate the proposed framework by analyzing several multi-task datasets, and the experimental results demonstrate that our FCL3 model can achieve better performance than most lifelong learning frameworks, even batch clustered multi-task learning models. …

SMuRF google
Within the statistical and machine learning literature, regularization techniques are often used to construct sparse (predictive) models. Most regularization strategies only work for data where all predictors are of the same type, such as Lasso regression for continuous predictors. However, many predictive problems involve different predictor types. We propose a multi-type Lasso penalty that acts on the objective function as a sum of subpenalties, one for each predictor type. As such, we perform predictor selection and level fusion within a predictor in a data-driven way, simultaneous with the parameter estimation process. We develop a new estimation strategy for convex predictive models with this multi-type penalty. Using the theory of proximal operators, our estimation procedure is computationally efficient, partitioning the overall optimization problem into easier to solve subproblems, specific for each predictor type and its associated penalty. The proposed SMuRF algorithm improves on existing solvers in both accuracy and computational efficiency. This is demonstrated with an extensive simulation study and the analysis of a case-study on insurance pricing analytics. …