Sugeno Integral
In mathematics, the Sugeno integral, named after M. Sugeno, is a type of integral with respect to a fuzzy measure.
http://…/Ayub_Khan_2009.pdf …
Graph-Based Collaborative Filtering (GCF)
Introducing consumed items as users’ implicit feedback in matrix factorization (MF) method, SVD++ is one of the most effective collaborative filtering methods for personalized recommender systems. Though powerful, SVD++ has two limitations: (i). only user-side implicit feedback is utilized, whereas item-side implicit feedback, which can also enrich item representations, is not leveraged;(ii). in SVD++, the interacted items are equally weighted when combining the implicit feedback, which can not reflect user’s true preferences accurately. To tackle the above limitations, in this paper we propose Graph-based collaborative filtering (GCF) model, Weighted Graph-based collaborative filtering (W-GCF) model and Attentive Graph-based collaborative filtering (A-GCF) model, which (i). generalize the implicit feedback to item side based on the user-item bipartite graph; (ii). flexibly learn the weights of individuals in the implicit feedback hence improve the model’s capacity. Comprehensive experiments show that our proposed models outperform state-of-the-art models.For sparse implicit feedback scenarios, additional improvement is further achieved by leveraging the step-two implicit feedback information. …
Visual Character-Enhanced Word Embedding (VCWE)
Chinese is a logographic writing system, and the shape of Chinese characters contain rich syntactic and semantic information. In this paper, we propose a model to learn Chinese word embeddings via two-level composition: (1) a convolutional neural network to extract the intra-character compositionality from the visual shape of a character; (2) a recurrent neural network with self-attention to compose character representation into word embeddings. The word embeddings along with the network parameters are learned in the Skip-Gram framework. Evaluations demonstrate the superior performance of our model on four tasks: word similarity, sentiment analysis, named entity recognition and part-of-speech tagging. …
Neural Network Exchange Format (NNEF)
NNEF reduces machine learning deployment fragmentation by enabling a rich mix of neural network training tools and inference engines to be used by applications across a diverse range of devices and platforms. The goal of NNEF is to enable data scientists and engineers to easily transfer trained networks from their chosen training framework into a wide variety of inference engines. A stable, flexible and extensible standard that equipment manufacturers can rely on is critical for the widespread deployment of neural networks onto edge devices, and so NNEF encapsulates a complete description of the structure, operations and parameters of a trained neural network, independent of the training tools used to produce it and the inference engine used to execute it. …
If you did not already know
31 Friday Dec 2021
Posted What is ...
in