GanDef google
Machine learning models, especially neural network (NN) classifiers, are widely used in many applications including natural language processing, computer vision and cybersecurity. They provide high accuracy under the assumption of attack-free scenarios. However, this assumption has been defied by the introduction of adversarial examples — carefully perturbed samples of input that are usually misclassified. Many researchers have tried to develop a defense against adversarial examples; however, we are still far from achieving that goal. In this paper, we design a Generative Adversarial Net (GAN) based adversarial training defense, dubbed GanDef, which utilizes a competition game to regulate the feature selection during the training. We analytically show that GanDef can train a classifier so it can defend against adversarial examples. Through extensive evaluation on different white-box adversarial examples, the classifier trained by GanDef shows the same level of test accuracy as those trained by state-of-the-art adversarial training defenses. More importantly, GanDef-Comb, a variant of GanDef, could utilize the discriminator to achieve a dynamic trade-off between correctly classifying original and adversarial examples. As a result, it achieves the highest overall test accuracy when the ratio of adversarial examples exceeds 41.7%. …

Train-less Accuracy Predictor for Architecture Search (TAPAS) google
In recent years an increasing number of researchers and practitioners have been suggesting algorithms for large-scale neural network architecture search: genetic algorithms, reinforcement learning, learning curve extrapolation, and accuracy predictors. None of them, however, demonstrated high-performance without training new experiments in the presence of unseen datasets. We propose a new deep neural network accuracy predictor, that estimates in fractions of a second classification performance for unseen input datasets, without training. In contrast to previously proposed approaches, our prediction is not only calibrated on the topological network information, but also on the characterization of the dataset-difficulty which allows us to re-tune the prediction without any training. Our predictor achieves a performance which exceeds 100 networks per second on a single GPU, thus creating the opportunity to perform large-scale architecture search within a few minutes. We present results of two searches performed in 400 seconds on a single GPU. Our best discovered networks reach 93.67% accuracy for CIFAR-10 and 81.01% for CIFAR-100, verified by training. These networks are performance competitive with other automatically discovered state-of-the-art networks however we only needed a small fraction of the time to solution and computational resources.
Introducing TAPAS


Taxicab Correspondence Analysis google
Taxicab Correspondence Analysis, Choulakian (2006) <doi:10.1007/s11336-004-1231-4>. Classical correspondence analysis (CA) is a statistical method to analyse 2-dimensional tables of positive numbers and is typically applied to contingency tables (Benzecri, J.-P. (1973). L’Analyse des Donnees. Volume II. L’Analyse des Correspondances. Paris, France: Dunod). Classical CA is based on the Euclidean distance. Taxicab CA is like classical CA but is based on the Taxicab or Manhattan distance. For some tables, Taxicab CA gives more informative results than classical CA. …

Locally-Connected Spiking Neural Network (LC-SNN) google
In recent years, Spiking Neural Networks (SNNs) have demonstrated great successes in completing various Machine Learning tasks. We introduce a method for learning image features by \textit{locally connected layers} in SNNs using spike-timing-dependent plasticity (STDP) rule. In our approach, sub-networks compete via competitive inhibitory interactions to learn features from different locations of the input space. These \textit{Locally-Connected Spiking Neural Networks} (LC-SNNs) manifest key topological features of the spatial interaction of biological neurons. We explore biologically inspired n-gram classification approach allowing parallel processing over various patches of the the image space. We report the classification accuracy of simple two-layer LC-SNNs on two image datasets, which match the state-of-art performance and are the first results to date. LC-SNNs have the advantage of fast convergence to a dataset representation, and they require fewer learnable parameters than other SNN approaches with unsupervised learning. Robustness tests demonstrate that LC-SNNs exhibit graceful degradation of performance despite the random deletion of large amounts of synapses and neurons. …