Learning Edge Properties in Graphs from Path Aggregations (LEAP) google
Graph edges, along with their labels, can represent information of fundamental importance, such as links between web pages, friendship between users, the rating given by users to other users or items, and much more. We introduce LEAP, a trainable, general framework for predicting the presence and properties of edges on the basis of the local structure, topology, and labels of the graph. The LEAP framework is based on the exploration and machine-learning aggregation of the paths connecting nodes in a graph. We provide several methods for performing the aggregation phase by training path aggregators, and we demonstrate the flexibility and generality of the framework by applying it to the prediction of links and user ratings in social networks. We validate the LEAP framework on two problems: link prediction, and user rating prediction. On eight large datasets, among which the arXiv collaboration network, the Yeast protein-protein interaction, and the US airlines routes network, we show that the link prediction performance of LEAP is at least as good as the current state of the art methods, such as SEAL and WLNM. Next, we consider the problem of predicting user ratings on other users: this problem is known as the edge-weight prediction problem in weighted signed networks (WSN). On Bitcoin networks, and Wikipedia RfA, we show that LEAP performs consistently better than the Fairness & Goodness based regression models, varying the amount of training edges between 10 to 90%. These examples demonstrate that LEAP, in spite of its generality, can match or best the performance of approaches that have been especially crafted to solve very specific edge prediction problems. …

Haversine Distance google
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles. The first table of haversines in English was published by James Andrew in 1805, but Florian Cajori credits an earlier use by José de Mendoza y Ríos in 1801. The term haversine was coined in 1835 by James Inman. These names follow from the fact that they are customarily written in terms of the haversine function, given by haversin( ) = sin^2(theta/2). The formulas could equally be written in terms of any multiple of the haversine, such as the older versine function (twice the haversine). Prior to the advent of computers, the elimination of division and multiplication by factors of two proved convenient enough that tables of haversine values and logarithms were included in 19th and early 20th century navigation and trigonometric texts. These days, the haversine form is also convenient in that it has no coefficient in front of the sin^2 function. …

Predictron google
One of the key challenges of artificial intelligence is to learn models that are effective in the context of planning. In this document we introduce the predictron architecture. The predictron consists of a fully abstract model, represented by a Markov reward process, that can be rolled forward multiple ‘imagined’ planning steps. Each forward pass of the predictron accumulates internal rewards and values over multiple planning depths. The predictron is trained end-to-end so as to make these accumulated values accurately approximate the true value function. We applied the predictron to procedurally generated random mazes and a simulator for the game of pool. The predictron yielded significantly more accurate predictions than conventional deep neural network architectures. …

Upper Confidence Bound (UCB) google
Bayesian optimisation (BO) has been a successful approach to optimise functions which are expensive to evaluate and whose observations are noisy. Classical BO algorithms, however, do not account for errors about the location where observations are taken, which is a common issue in problems with physical components. In these cases, the estimation of the actual query location is also subject to uncertainty. In this context, we propose an upper confidence bound (UCB) algorithm for BO problems where both the outcome of a query and the true query location are uncertain. The algorithm employs a Gaussian process model that takes probability distributions as inputs. Theoretical results are provided for both the proposed algorithm and a conventional UCB approach within the uncertain-inputs setting. Finally, we evaluate each method’s performance experimentally, comparing them to other input noise aware BO approaches on simulated scenarios involving synthetic and real data. …