Fast Shannon Mutual Information (FSMI)
Exploration tasks are embedded in many robotics applications, such as search and rescue and space exploration. Information-based exploration algorithms aim to find the most informative trajectories by maximizing an information-theoretic metric, such as the mutual information between the map and potential future measurements. Unfortunately, most existing information-based exploration algorithms are plagued by the computational difficulty of evaluating the Shannon mutual information metric. In this paper, we consider the fundamental problem of evaluating Shannon mutual information between the map and a range measurement. First, we consider 2D environments. We propose a novel algorithm, called the Fast Shannon Mutual Information (FSMI). The key insight behind the algorithm is that a certain integral can be computed analytically, leading to substantial computational savings. Second, we consider 3D environments, represented by efficient data structures, e.g., an OctoMap, such that the measurements are compressed by Run-Length Encoding (RLE). We propose a novel algorithm, called FSMI-RLE (Fast Shannon Mutual Information Run-Length Encoding), that efficiently evaluates the Shannon mutual information when the measurements are compressed using RLE. For both the FSMI and the FSMI-RLE, we also propose variants that make different assumptions on the sensor noise distribution for the purpose of further computational savings. We evaluate the proposed algorithms in extensive experiments. In particular, we show that the proposed algorithms outperform existing algorithms that compute Shannon mutual information as well as other algorithms that compute the Cauchy-Schwarz Quadratic mutual information (CSQMI). In addition, we demonstrate the computation of Shannon mutual information on a 3D map for the first time. …
MeSH-gram
Eliciting semantic similarity between concepts in the biomedical domain remains a challenging task. Recent approaches founded on embedding vectors have gained in popularity as they risen to efficiently capture semantic relationships The underlying idea is that two words that have close meaning gather similar contexts. In this study, we propose a new neural network model named MeSH-gram which relies on a straighforward approach that extends the skip-gram neural network model by considering MeSH (Medical Subject Headings) descriptors instead words. Trained on publicly available corpus PubMed MEDLINE, MeSH-gram is evaluated on reference standards manually annotated for semantic similarity. MeSH-gram is first compared to skip-gram with vectors of size 300 and at several windows contexts. A deeper comparison is performed with tewenty existing models. All the obtained results of Spearman’s rank correlations between human scores and computed similarities show that MeSH-gram outperforms the skip-gram model, and is comparable to the best methods but that need more computation and external resources. …
Clustrophile 2
Data clustering is a common unsupervised learning method frequently used in exploratory data analysis. However, identifying relevant structures in unlabeled, high-dimensional data is nontrivial, requiring iterative experimentation with clustering parameters as well as data features and instances. The space of possible clusterings for a typical dataset is vast, and navigating in this vast space is also challenging. The absence of ground-truth labels makes it impossible to define an optimal solution, thus requiring user judgment to establish what can be considered a satisfiable clustering result. Data scientists need adequate interactive tools to effectively explore and navigate the large space of clusterings so as to improve the effectiveness of exploratory clustering analysis. We introduce \textit{Clustrophile 2}, a new interactive tool for guided clustering analysis. \textit{Clustrophile 2} guides users in clustering-based exploratory analysis, adapts user feedback to improve user guidance, facilitates the interpretation of clusters, and helps quickly reason about differences between clusterings. To this end, \textit{Clustrophile 2} contributes a novel feature, the clustering tour, to help users choose clustering parameters and assess the quality of different clustering results in relation to current analysis goals and user expectations. We evaluate \textit{Clustrophile 2} through a user study with 12 data scientists, who used our tool to explore and interpret sub-cohorts in a dataset of Parkinson’s disease patients. Results suggest that \textit{Clustrophile 2} improves the speed and effectiveness of exploratory clustering analysis for both experts and non-experts. …
ExplaiNE
Networks are powerful data structures, but are challenging to work with for conventional machine learning methods. Network Embedding (NE) methods attempt to resolve this by learning vector representations for the nodes, for subsequent use in downstream machine learning tasks. Link Prediction (LP) is one such downstream machine learning task that is an important use case and popular benchmark for NE methods. Unfortunately, while NE methods perform exceedingly well at this task, they are lacking in transparency as compared to simpler LP approaches. We introduce ExplaiNE, an approach to offer counterfactual explanations for NE-based LP methods, by identifying existing links in the network that explain the predicted links. ExplaiNE is applicable to a broad class of NE algorithms. An extensive empirical evaluation for the NE method `Conditional Network Embedding’ in particular demonstrates its accuracy and scalability. …
If you did not already know
09 Thursday Dec 2021
Posted What is ...
in