Multi-Node2vec google
Learning interpretable features from complex multilayer networks is a challenging and important problem. The need for such representations is particularly evident in multilayer networks of the brain, where nodal characteristics may help model and differentiate regions of the brain according to individual, cognitive task, or disease. Motivated by this problem, we introduce the multi-node2vec algorithm, an efficient and scalable feature engineering method that automatically learns continuous node feature representations from multilayer networks. Multi-node2vec relies upon a second-order random walk sampling procedure that efficiently explores the inner- and intra-layer ties of the observed multilayer network is utilized to identify multilayer neighborhoods. Maximum likelihood estimators of the nodal features are identified through the use of the Skip-gram neural network model on the collection of sampled neighborhoods. We investigate the conditions under which multi-node2vec is an approximation of a closed-form matrix factorization problem. We demonstrate the efficacy of multi-node2vec on a multilayer functional brain network from resting state fMRI scans over a group of 74 healthy individuals. We find that multi-node2vec outperforms contemporary methods on complex networks, and that multi-node2vec identifies nodal characteristics that closely associate with the functional organization of the brain. …

FoveaBox google
We present FoveaBox, an accurate, flexible and completely anchor-free framework for object detection. While almost all state-of-the-art object detectors utilize the predefined anchors to enumerate possible locations, scales and aspect ratios for the search of the objects, their performance and generalization ability are also limited to the design of anchors. Instead, FoveaBox directly learns the object existing possibility and the bounding box coordinates without anchor reference. This is achieved by: (a) predicting category-sensitive semantic maps for the object existing possibility, and (b) producing category-agnostic bounding box for each position that potentially contains an object. The scales of target boxes are naturally associated with feature pyramid representations for each input image. Without bells and whistles, FoveaBox achieves state-of-the-art single model performance of 42.1 AP on the standard COCO detection benchmark. Specially for the objects with arbitrary aspect ratios, FoveaBox brings in significant improvement compared to the anchor-based detectors. More surprisingly, when it is challenged by the stretched testing images, FoveaBox shows great robustness and generalization ability to the changed distribution of bounding box shapes. The code will be made publicly available. …

Orthogonal Floating Search Framework google
The present study proposes a new Orthogonal Floating Search framework for structure selection of nonlinear systems by adapting the existing floating search algorithms for feature selection. The proposed framework integrates the concept of orthogonal space and consequent Error-Reduction-Ratio (ERR) metric with the existing floating search algorithms. On the basis of this framework, three well-known feature selection algorithms have been adapted which include the classical Sequential Forward Floating Search (SFFS), Improved sequential Forward Floating Search (IFFS) and Oscillating Search (OS). This framework retains the simplicity of classical Orthogonal Forward Regression with ERR (OFR-ERR) and eliminates the nesting effect associated with OFR-ERR. The performance of the proposed framework has been demonstrated considering several benchmark non-linear systems. The results show that most of the existing feature selection methods can easily be tailored to identify the correct system structure of nonlinear systems. …

Distributional Variant of Gradient Temporal-Difference (Distributional GTD2) google
We devise a distributional variant of gradient temporal-difference (TD) learning. Distributional reinforcement learning has been demonstrated to outperform the regular one in the recent study \citep{bellemare2017distributional}. In our paper, we design two new algorithms called distributional GTD2 and distributional TDC using the Cram{\’e}r distance on the distributional version of the Bellman error objective function, which inherits advantages of both the nonlinear gradient TD algorithms and the distributional RL approach. We prove the asymptotic almost-sure convergence to a local optimal solution for general smooth function approximators, which includes neural networks that have been widely used in recent study to solve the real-life RL problems. In each step, the computational complexity is linear w.r.t.\ the number of the parameters of the function approximator, thus can be implemented efficiently for neural networks. …