Tensor Core google
The NVIDIA Volta GPU microarchitecture introduces a specialized unit, called ‘Tensor Core’ that performs one matrix-multiply-and-accumulate on 4×4 matrices per clock cycle. The NVIDIA Tesla V100 accelerator, featuring the Volta microarchitecture, provides 640 Tensor Cores with a theoretical peak performance of 125 Tflops/s in mixed precision. In this paper, we investigate current approaches to program NVIDIA Tensor Cores, their performances and the precision loss due to computation in mixed precision. Currently, NVIDIA provides three different ways of programming matrix-multiply-and-accumulate on Tensor Cores: the CUDA Warp Matrix Multiply Accumulate (WMMA) API, CUTLASS, a templated library based on WMMA, and cuBLAS GEMM. After experimenting with different approaches, we found that NVIDIA Tensor Cores can deliver up to 83 Tflops/s in mixed precision on a Tesla V100 GPU, seven and three times the performance in single and half precision respectively. A WMMA implementation of batched GEMM reaches a performance of 4 Tflops/s. While precision loss due to matrix multiplication with half precision input might be critical in many HPC applications, it can be considerably reduced at the cost of increased computation. Our results indicate that HPC applications using matrix multiplications can strongly benefit from using of NVIDIA Tensor Cores. …

Movie Intelligent Recommender Agent (MIRA) google
The human mind is still an unknown process of neuroscience in many aspects. Nevertheless, for decades the scientific community has proposed computational models that try to simulate their parts, specific applications, or their behavior in different situations. The most complete model in this line is undoubtedly the LIDA model, proposed by Stan Franklin with the aim of serving as a generic computational architecture for several applications. The present project is inspired by the LIDA model to apply it to the process of movie recommendation, the model called MIRA (Movie Intelligent Recommender Agent) presented percentages of precision similar to a traditional model when submitted to the same assay conditions. Moreover, the proposed model reinforced the precision indexes when submitted to tests with volunteers, proving once again its performance as a cognitive model, when executed with small data volumes. Considering that the proposed model achieved a similar behavior to the traditional models under conditions expected to be similar for natural systems, it can be said that MIRA reinforces the applicability of LIDA as a path to be followed for the study and generation of computational agents inspired by neural behaviors. …

Hierarchical Importance Weighted Autoencoder google
Importance weighted variational inference (Burda et al., 2015) uses multiple i.i.d. samples to have a tighter variational lower bound. We believe a joint proposal has the potential of reducing the number of redundant samples, and introduce a hierarchical structure to induce correlation. The hope is that the proposals would coordinate to make up for the error made by one another to reduce the variance of the importance estimator. Theoretically, we analyze the condition under which convergence of the estimator variance can be connected to convergence of the lower bound. Empirically, we confirm that maximization of the lower bound does implicitly minimize variance. Further analysis shows that this is a result of negative correlation induced by the proposed hierarchical meta sampling scheme, and performance of inference also improves when the number of samples increases. …

Column2Vec google
We present Column2Vec, a distributed representation of database columns based on column metadata. Our distributed representation has several applications. Using known names for groups of columns (i.e., a table name), we train a model to generate an appropriate name for columns in an unnamed table. We demonstrate the viability of our approach using schema information collected from open source applications on GitHub. …